

AFRL-IF-RS-TR-2006-119
Final Technical Report
April 2006

JOINT EXPERIMENTATION ON SCALABLE
PARALLEL PROCESSORS (JESPP)

University of Southern California

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-119 has been reviewed and is approved for publication

APPROVED: /s/

DUANE GILMOUR
Project Engineer

 FOR THE DIRECTOR: /s/

 JAMES A. COLLINS
 Deputy Chief, Advanced Computing Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
APRIL 2006

3. REPORT TYPE AND DATES COVERED
Final Sep 02 – Sep 04

4. TITLE AND SUBTITLE
JOINT EXPERIMENTATION ON SCALABLE PARALLEL PROCESSORS
(JESPP)

6. AUTHOR(S)
Dan M. Davis, Robert F. Lucas, Ke-Thia Yao, Gene Wagenbreth

5. FUNDING NUMBERS
C - F30602-02-C-0213
PE - N/A
PR - JESP
TA - PS
WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
4647 Admiralty Way
Marina Del Rey, California 90292-6695

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFTC
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-119

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Duane Gilmour/IFTC/(315) 330-3550 Duane.Gilmour@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The Joint Experimentation on Scalable Parallel Processors (JESPP) project exemplified the accessibility and the utility
of High Performance Computing for large-scale simulations. In order to simulate the future battlespace, the US Joint
Forces Command’s (USJFCOM) Experimentation Directorate (J9) required expansion of its joint semi-automated forces
(JSAF) code capabilities; including number of entities, behavior complexity, terrain resolution, infrastructure features,
environmental realism, and analytical potential. The USJFCOM J9 was charged with developing a very large-scale
simulation capability of future combat environments, particularly urban areas, with more than one million civilian
simulated entities. Synthetic forces have long run in parallel on networked computers. The JESPP strategy exploited
the scalable parallel processors (SPPs) of the High Performance Computing Modernization Program (HPCMP). SPPs
provide a large number of processors, interconnected with a high performance switch and a collective job management
framework. To achieve the goal of simulating one million entities, software routers were developed that replaced
multicast with point-to-point transmission of interest-managed packets. This final report lays out that design and
development. It also details several experimentation events that have simulated up to one million clutter entities, which
were “fought” from Suffolk, VA.

15. NUMBER OF PAGES
105

14. SUBJECT TERMS
Large scale simulation, semi-automated force simulation, distributed supercomputer,
software routers, scalable parallel processor supercomputing 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1.0 Executive Summary .. 1
2.0 Methods, Assumptions and Procedures .. 1
3.0 Project Goals... 4

3.1 Results and Discussion ... 5
3.1.1 Parallelize critical JESPP functions ... 8
3.1.2 Operationalize the JESPP capability.. 5
3.1.3 Implement JESPP on two HPCMP SPPs via DREN... 8
3.1.4 Improve control, performance and behaviors .. 10
3.1.5 Emphasize urban environments ... 11
3.1.6 Participate in spiral events, experiments and tests... 12
3.1.7 Implement and verify urban capabilities.. 13
3.1.8 Implement a system to log and analyze appropriate data .. 13
3.1.9 Continue to develop fault tolerant operations.. 15
3.1.10 Implement SLAMEM on a cluster... 15
3.1.11 Install and coordinate the new J9 HPCMP Distributed Center (DC) Cluster........ 16
3.1.12 Support communications, security and encryption.. 16

4.0 Conclusions... 17
Appendix A – Publications... 20
Appendix B – The Road to Successful Joint Experimentation Starts at the Data Collection

Trail... 21
Appendix C – Experimental Interest Management Architecture for DCEE................................ 31
Appendix D – Joint Experimentation on Scalable Parallel Processors .. 40
Appendix E – Supporting Distributed Simulation on Scalable Parallel Processor Systems........ 51
Appendix F – 21st Century Simulation: Exploiting High Performance Computing and Data

Analysis... 60
Appendix G – Advanced Message Routing for Scalable Distributed Simulations 74
Appendix H – Successful Joint Experimentation Starts at the Data Collection Trail - Part II..... 84
Appendix I – An Interdisciplinary Approach to the Study of Battlefield Simulation Systems .. 93

 ii

List of Figures

Figure 1 - Router Design Diagram 4
Figure 2 - Notional Diagram of Tree Router Implementation 6
Figure 3 - Notional Diagram of Mesh Router Implementation 6
Figure 4 - Flow Chart Diagram of Data Management 7
Figure 5 - Semi-log Chart of Ratio of Performance Advantage of Mesh over Tree Routers using

Test Message Inter-node Communications 8
Figure 6 - Screen Capture of Typical Urban Terrain Environment 12
Figure 7 - Global, Area of Interest Specific, and Buildings in Variable Resolution Terrain
 Databases 123
Figure 8 - Flow Chart of Data Logger System 15
Figure 9 - The Trans-Continental Connectivity, in the Original Tree Configuration 127

 1

1.0 Executive Summary
The Joint Experimentation on Scalable Parallel Processors (JESPP) project exemplified the
accessibility and the utility of High Performance Computing for large-scale simulations. In order
to simulate the future battlespace, the US Joint Forces Command’s (USJFCOM)
Experimentation Directorate (J9) required expansion of its joint semi-automated forces (JSAF)
code capabilities; including number of entities, behavior complexity, terrain resolution,
infrastructure features, environmental realism, and analytical potential. The USJFCOM J9 was
charged with developing a very large-scale simulation capability of future combat environments,
particularly urban areas, with more than one million civilian simulated entities. Synthetic forces
have long run in parallel on networked computers. The JESPP strategy exploited the scalable
parallel processors (SPPs) of the High Performance Computing Modernization Program
(HPCMP). SPPs provide a large number of processors, interconnected with a high performance
switch and a collective job management framework. To achieve the goal of simulating one
million entities, software routers were developed that replaced multicast with point-to-point
transmission of interest-managed packets. This final report lays out that design and
development. It also details several experimentation events that have simulated up to one
million clutter entities, which were “fought” from Suffolk, VA. These entities were typically
executed on remote SPP systems, one in Maui, Hawaii and one in Dayton, Ohio. This report
further sets forth the experience in scoping the high performance computing hardware needs to
support SPPs, developing the project with the HPCMP, and implementing the system.

2.0 Methods, Assumptions and Procedures
The long-term objective of the USJFCOM has been to lead the transformation of the United
States Armed Forces to achieve full-spectrum dominance, as described in Joint Vision 2010 and
2020. The research arm of the USJFCOM is J9, which integrates experimentation efforts of the
services and unified commands. It has been and is America's military transformation laboratory.
To meet the DoD transformation goals, USJFCOM conducts exercises of increasing size,
capability and resolution. These increases needed to be orders of magnitude larger than those
previously possible.

To accomplish an exercise of this unprecedented scale, the first and most obvious task was the
implementation of the core of the JSAF program on a platform capable of supporting terascale
computing: the SPP environment. This was the foundation for this effort. This implementation
could only be effective with the best parallel architecture possible, using the best practices of
parallel programming and system engineering. Some of this work had commenced under a
previously conducted effort, funded by the Defense Advanced Research Projects Agency
(DARPA). This was the well-founded basis on which to build a program for this effort. In
addition, several tasks had to be completed and tools provided to enable the exercises of
increasing size, capability and resolution. These tasks include:

• Clutter definition and SPP adaptation
• Terrain server implementation on SPP nodes

 2

• Terrain data base definition and SPP adaptation
• Exercise initiation utility creation (to lay down entities)

To exploit and verify SPP capabilities in this field, the initial focus was on an evaluation in
which one million clutter entities were to be exercised on a large-scale, high resolution terrain
database (TDB).

In order to simulate the future battlespace, the USJFCOM J9 had to expand the capabilities of its
JSAF code along several critical axes; including continuous experimentation, number of entities,
behavior complexity, terrain databases, dynamic infrastructure representations, environmental
models, and analytical capabilities. Increasing the size and complexity of exercises supported by
JSAF, in turn, required increasing the computing resources available to the USJFCOM. The
approach pursued in this effort was to exploit SPPs deployed by the DoD’s HPCMP. Synthetic
forces had long run in parallel on networked computers. SPPs were a natural extension of this,
providing a large number of processors, interconnected with a high performance switch, and a
collective job management framework. To effectively use an SPP, software routers that replace
multicast messaging with point-to-point transmission of interest-managed packets were
developed. This in turn required development of a new simulation preparation utility to define
the communication topology and initialize the exercise. Tools were developed to monitor
processor and network loading, as well as loggers capable of absorbing all of the exercise data.

Current and future operational imperatives are driving experimental designs which require
further expansions of JSAF capabilities. As noted before, some of the requirements justifying
these extensions were the need for:

• More entities
• More complex behaviors
• Larger geographic area
• Multiple resolution terrain
• More complex environments

The most readily available source of one or more orders of magnitude of increased compute
power was the capability presented by SPPs. In this project, the JSAF code was ported to run on
multiple Linux clusters, using hundreds of processors on each cluster. Future runs will require
thousands of processors on multiple clusters. The primary difficulty in using these resources was
the scaling of internode communication.

The User Datagram Protocol (UDP) multicast was limited to approximately three thousand
different channels. Based on geography alone, worldwide simulations using JSAF require many
more interest states. To enable this, the UDP multicast had to be replaced by software routers.

Software routers were implemented on individual nodes in a network that included all of the
client simulators. Each simulator was connected to only one router. Routers were connected to
multiple clients and multiple routers. Each connection was a two-way connection. Two types of

 3

information were present in the network. One was data from the simulation engines along with
interest descriptions. The other was the current interest state of each client. The interest state
changes as each node subscribes and unsubscribes to specific interest sets, as was appropriate
depending on the simulation progress.

Each router had to maintain the interest set of each node to which it was connected, including
other routers. A router’s interest set was the union of all the connected nodes. A router then
used the interest state associated with the data it receives to determine how to forward the data.
For a given topology, communication was minimized such that each client node received exactly
the data in which it was interested.

The initial router implementation was a tree router. Each router had multiple clients but only one
parent. There was one router that was at the top of the tree. A second topology was
subsequently implemented. This is referred to as a mesh router. Instead of a single router at the
top of a tree, there was a mesh of routers with all-to-all communication. Each simulator was a
client of one of the mesh routers. Like the tree router, the primary task of the mesh router was to
maintain the interest state of all clients so as to forward only data that was of interest to each
client and router. Further hybrid topologies were made possible with little or no code
modification, such as a mesh of meshes or a mesh of trees. Conceptually, the mesh provides
better scalability, and in practice this has been demonstrated.

Another use of routers was the implementation of gateways providing an interface between
different runtime infrastructure (RTI) and communication implementations. Both transmission
control protocol (TCP) and UDP were used for communication. Routers could use a different
protocol on different connections and perform required data bundling, unbundling, etc. Different
RTI implementations, required by simulators developed by different groups, could communicate
via router-based gateways. A router design diagram is shown in Figure 1.

The ultimate goal was for the capacity of a simulator network to scale easily as the numbers of
processors were increased by several orders of magnitude. Comprehensive testing and
measurement was required to document the performance of various topologies and router
implementations. This testing identified performance bottlenecks and suggests alternative
implementations to be tested. Multiple simulation scenarios are required to be tested to construct
guidelines for assigning simulators, routers and topologies to multiple SPPs.

 4

Figure 1 - Router Design Diagram

To demonstrate SPP capabilities, as well as to support future use and development of joint
experimentation, clutter entities were identified and defined. Further, this allowed for the
identification, investigation, modification, creation and validation of a scalable parallelized
terrain server for use in SPP simulations using JSAF. To enable this server development and
test, a terrain database was selected, analyzed and modified, as required, for parallel use on SPPs
and prepared for use in the test. In addition, to enable rapid testing without significant operator
involvement, a utility to lay down the entities in a realistic and efficient manner was developed
and incorporated into early and subsequent tests.

3.0 Project Goals
The following specific tasks were identified as necessary in pursuit of the project goals:

• Parallelize critical JESPP functions
• Operationalize the JESPP capability
• Implement JESPP on two HPCMP SPPs via the Defense Research and Engineering

Network (DREN)
• Improve control, performance and behaviors
• Emphasize urban environments
• Participate in spiral events, experiments and tests
• Implement and verify urban capabilities
• Implement a system to log and analyze appropriate data
• Continue to develop fault tolerant operations
• Assist Toyon Corporation in implementing the Simulation of the Locations and Attack of

Mobile Enemy Missiles (SLAMEMTM) capability on the cluster

 5

• Install and coordinate the new J9 HPCMP Distributed Center (DC) Cluster
• Support communications, security and encryption

3.1 Results and Discussion
The initial task for this project focused on successfully implementing a scalable computational
environment for JSAF. This was followed by efforts related to fault tolerance, experiment
initialization/entity control, multi-platform portability, and data logging. All of these issues were
driven by the implementation of the SPP technology. Appropriate centers of expertise were
identified to resolve each of these critical areas in a way that allowed early utilization of the SPP
technology in Joint Experimentation and produced durable and robust solutions that withstood
the rigor imposed by the ever-changing needs of USJFCOM.

Throughout this work, the following fundamental design goals were pursued:

• Interest management and communication must be scalable.
• There could be no artificial barriers to the number of entities allowed.
• There must be minimal imposition on the JSAF source code.
• A capability to introduce new modules containing undefined sensors and other novel

entities must be enabled.
• J9’s computational power must continue to be increased to enable it to represent new

features; such as communication systems, dynamic terrain and advanced weather models.

Details of the principle tasks that were identified by the USJFCOM J9 follow. Numerous
technical papers were written during the course of this project and are included in the Appendix
and should be referenced in support of the results that follow.

3.1.1 Parallelize critical JESPP functions
The enabling of the preliminary use of the computing power that was provided by parallel
computers was accomplished in three phases. They were:

• Implement parallel routers in MPI
• Design and code a socket programmed version
• Test, operate, evaluate and update code

The first phase was accomplished early in the effort, just after the commencement of this project.
Two versions of the routers were implemented: the tree routers and the mesh routers. A notional
diagram appears in Figures 2 & 3 and the papers by Dr. Gottschalk in the Appendix provide
more explicit descriptions of the differences and relative advantages of the two designs.

 6

Figure 2 - Notional Diagram of Tree Router Implementation

Figure 3 - Notional Diagram of Mesh Router Implementation

As there are many instantiations of modules on each node, ranging from several hundred to
several thousand, the most critical function to parallelize was the internode communications.
These communications were required when one entity needed to send its location, orientation
and state to another entity. To avoid the “n squared” scaling typical of all-to-all
communications, filtering at the router level restricts traffic flow to the lowest acceptable levels.
Interest management enables a scalability that permits entities within relevant proximity to
communicate, while obviating useless communication between entities so geographically
separated that the data is superfluous, e.g. a tank in Baghdad has no great need for real-time
updates on a tank in Basrah. The difficulties come, obviously, when you have a high-altitude
sensor that can see all of the entities in both cities.

 7

Initial testing established that the tree routers provided acceptable scalability and performance
for the level of simulations being run as part of the JFCOM experiments. As the tree was more
intuitive, it was used by the operations personnel. As noted in the papers in the Appendix, the
tree routers are less scalable than the mesh routers. That suggests a future adoption of the mesh
routers as the more scalable standard, but that move was not implemented in this period of
performance.

Another important function that was amenable to parallelization was the data logging
requirement. As the computation, data and the users are trans-continentally distributed, a new
method of data logging was required. Working with scientists from the Institute for Defense
Analyses, a data logger was designed that was easily inserted into the JSAF code. This logger
was based around the intercept of data when it was originally communicated. This process is
more fully outlined in the papers by Dr. Yao, all of which can be found in the Appendix. Figure
4 is a flow-chart representation of this design.

Figure 4 - Flow Chart Diagram of Data Management

Operations conducted using this system showed adequate performance and the system proved
effective at collecting and managing up to two terabytes of data per week. It should be noted
that this amount of data is as much as three orders of magnitude less than the final data flow
anticipated if the program were to log all data, increase the sophistication of the behaviors and
increase the number of entities. All of these increases are ardently sought by the Joint Forces
Command. The data management system shows no natural scalability constraints and the
principal reason for not logging all of this data is that the physical devices for storage, i.e. a disk
array, is limited to two terabytes.

 8

Testing continued for the rest of the period of performance, with significant gains in stability and
performance being indicated. The tree routers exhibited a natural constriction at the root node,
which led to higher latency than necessary; redundant circuit paths e.g. routing messages from
Maui to Norfolk and then back to San Diego; and an obvious “single point of failure.”
Continued testing of mesh router performance demonstrated the desirability of implementing that
design.

Figure 5 below gives an indication of some of the performance results obtained during the
research on this project. This chart was generated using a test code that fired off successions of
messages of varying sizes. The vertical axis represents the result of dividing the tree router times
by the mesh router times for comparable conditions. While scalability rather than throughput
was the goal, a performance gain shows a good foundation for future scalability. Number of
“hops” refers to how many routers intervene between nodes used in this test.

Figure 5 - Semi-log Chart of Ratio of Performance Advantage of Mesh over Tree
Routers using Test Message Inter-node Communications

3.1.2 Operationalize the JESPP capability
The goal of this task was operationalizing the JESPP JSAF code. This required enabling it to
tolerate failure in any individual processor in the SPP. There could be no single point of failure.
Among other things, this would allow the user to stop and restart any arbitrary node on the SPP,
including the routers. Several concepts for fault tolerance were evaluated:

 9

• Redundant, stand-by nodes
• Mirrored router nodes
• Dynamic, adjustable mesh to optimize entity densities
• Use of new fault tolerant communication fabric for the mesh router
• Utilization of Globus techniques to switch tasks between pre-configured partitions of

SPPs

The principle task under this segment was the provision of providing an operationally stable and
usable system. This single effort was of the greatest concern to the Joint Forces Command and
was the most importane advance required by the Joint Experimentation group.

A reprioritization of this task was necessitated by emerging issues not well-recognized or defined
prior to the execution of the contract, e.g. fault tolerance was not nearly the concern that was
anticipated, while security issues became more of a driver for the system development. There
was a constant pressure and continuous effort to further refine the newly parallelized, scalable
code. The operational/development paradigm for JSAF in the USJFCOM implementation is to
have a real-time, interactive development during the experiments. For instance, during any
experiment, changes to the code could be anticipated several times a day for two weeks. These
changes required a rapid analysis by JESPP computational scientist and an assiduous attendance
to detail and attendance at code development meetings and experiment planning sessions. This
illuminated the need for a deep understanding of the subject code and a close and collegial
working relationship with programmers and simulation operators. This allowed for many
unheralded and rapid responses to changes being implemented. In general, fault tolerance at the
node or partition level was not a major issue.

Operational issues that were faced were far more significant than fault tolerance. As an example,
during this effort, SPP assets were not available for two principle reasons, center downtime for
major upgrades or security operations or center off-line status due to power or communications
failures. There were three major outages, maintenance took Aeronautical Systems Center Major
Shared Resource Center (ASC MSRC) off-line, a storm disrupted communications at JFCOM,
and a power outage on the island of Maui took down the Maui High Performance Computing
Center (MHPCC). In none of these cases, would a mesh redundancy or fault tolerance been of
any significant use.

One of the major contributions of this effort was the path-finding nature of establishing real
interactive operations at the HPC level. The research community is largely operating in the
batch mode, but several individuals are leading efforts to enable and advocate for interactive
HPC. As the JESPP project progressed, it became obvious that it was not only the
groundbreaking project, but, due to its high visibility, it was used as an example of the need for
such a computational environment.

A significant amount of time was expended developing close coordination with the other
members of the JSAF team, especially Lockheed Martin Information Systems (LMIS). The
experimentation environment provided a continuous testing and evaluation setting for exercising

 10

the SPP environment. All modifications were carefully coordinated with JSAF team, with an eye
toward not making changes that would hamper their use in ongoing exercises. The JESPP team
also designed their code submissions to avoid mandating modifications that would have imposed
onerous re-coding of existing modules.

3.1.3 Implement JESPP on two HPCMP SPPs via DREN
This task focused on implementing the current and future capabilities on high performance
hardware owned and controlled by the DoD. Close attention was paid to utilizing HPCMP
computers, if possible. Suitable SPPs were identified and selected, which were comparable to
the Linux clusters used in the initial development of JESPP. An investigation into the
accessibility and range of SPP computers available to J9 experimenters at the HPCMP sites was
accomplished. Our personnel were familiar with current trends in SPP computing and
computational science initiatives and used that as background as they assiduously identified and
documented the planned future platforms at the HPCMP sites. Having established the likely
range of SPPs to be available in the future, the team carefully assessed the needed modifications
to the JESPP system to ensure easy portability, hardware and software compatibility, and
incorporation of enhancements enabled by the projected future advances. Having done so, the
team picked a few representative SPPs, and conducted a series of portability tests and
performance evaluations. Two computers were arranged to support a prototype event utilizing
the J9 experimental test bays. These machines had DREN connectivity which was sufficient to
provide bandwidth on the order of 50 Mb/s to the JESPP. Our personnel assisted J9 in
designing, selecting, installing and initializing a “Beowulf” Linux cluster at J9, which was
initially comprised of 16 dual-processor nodes.

3.1.4 Improve control, performance and behaviors
This task focused on making the conceptualization, definition, and initialization of each
experiment more accessible to experimenters. This was one of the major goals set forth in two
workshops on Joint Experimentation on SPPs in 2002. The process was both intuitive to the new
experimenter and familiar to the experienced J9 personnel. The JESPP team had to learn the
JFCOM culture of code improvement and modification. As this is a rather unusual process, a
few words might help explicate the issue.

While literally volumes have been written on the standard code development paradigm, the
JFCOM system responds of necessity to a different operational tempo. The standard
environment envisions a batch operation with fixed deadlines, clearly delineated ahead of time,
as follows: “we must double the capacity of our buffers by this day, all organizational rules for
development, test and documentation are in force.” The JFCOM scenario is much more likely to
be, “the experiment director (not infrequently a flag officer) liked the run this morning, but after
lunch he wants the entities to display emotional characteristics and the terrain to show impact
results from weapons.” As there are up to one hundred participants in a typical experiment,
taking the time to carefully follow coding conventions, including adequate documentation,
would cost not an hour per programmer hour, but 100 staff hours per each hour the experiment
waited on coding changes.

 11

This incredibly interactive programming style had two major impacts on the JESPP team.

• The C++ code with which they had to interface was very dynamic and bore constant
monitoring to keep the routers and high performance computing from being the failure
point for the experiment

• The body of the code itself, some two and half million lines of it, was largely un-
documented as far as avoiding pitfalls

As an example of how this impacted the crew, there was an occasion where the JFCOM
developers had inserted a piece of code to explicitly identify a “hard-wired” circuit for inter-node
communications. This change, as was the tradition, was known only to those working the
problem at that time. When the mesh routers were applied to this code, performance dropped
dramatically. The mesh routers were automatically establishing links that were not only
redundant to, but were actually stimulating the new code to spawn several links for each
communications path. This, naturally, adversely impacted performance. Our team was able to
overcome these issues and become productive in the demanding short time periods available to
implement on-the-fly fixes.

The approach built on previous tools and procedures, including Multisystem Automation Remote
Control and Instrumentation (MARCI). The goal of this task was to approach the optimal
distribution of the various computational and visualization tasks to the most efficient assets
available. It was conceivable that all computation and visualization could be done on the mesh
of the high performance computers, with only the X Windows screen data being passed over the
network

3.1.5 Emphasize urban environments
This task entailed the on-going analysis and support for the continuing improvement of the
JESPP’s ability to support experimentation in urban environments. This was manifest both in
the high-fidelity urban terrain databases and in the inter-visibility issues raised when combatants
are active in a congested area. This task was integral with all of the other tasks enumerated
herein, in that each activity was oriented toward improving the fidelity, utility, and validity of
JSAF models in an urban setting. Inclusions of other federates, improved terrain mapping of
man-made infrastructures, better representations of buildings, and increased entity densities were
all necessary to support urban environments. Figure 6 shows a screen capture of a typical urban
terrain environment.

 12

Figure 6 - Screen Capture of Typical Urban Terrain Environment

3.1.6 Participate in spiral events, experiments and tests
An event was designed, planned, organized, and conducted in order to demonstrate code
improvements and to incorporate as many of the capabilities listed above into the JSAF code
base. Specific goals, dates, locations, hardware, network and participants were suggested by our
team and approved by the leadership.

The schedule was typically a spiral development event every month, usually two weeks in
duration, to prepare for the main experiment. This required the involvement of both
development activities and preparation for on-line consulting and trouble-shooting during the
“record runs” that were the ultimate goal and final punctuation of the spiral events. During this
preparation, new code was developed, tested and submitted to the concurrent versions system
(CVS) tree maintained by Lockheed Martin. On the weeks of the runs themselves, JESPP
personnel were present at numerous locations to see first-hand how the test was going as well as
to perform consulting, trouble-shooting and support activities.

 13

3.1.7 Implement and verify urban capabilities
This task focused on implementing and verifying the urban environment capabilities developed
in the previous tasks. Those capabilities that were ready to be utilized as part of the USJFCOM
Distributed Continuous Experimentation Environment (DCEE) base capability were used to
support a J9 human-in-the-loop project.

This implementation involved the following three characteristics:

• A global-scale, low resolution terrain upon which to set the local action
• A high resolution inset of a data set representing an urban area
• A believable set of civilian clutter distributed in that environment

Figure 7 - Global, Area of Interest Specific, and Buildings in Variable Resolution Terrain
Databases

The JESPP team provided scalable computing support for these three objectives. This would
entail simulating the previously fielded civilian entity group several times. It also mandated that
the terrain and the simulated entities would be distributed effectively across the nodes and would
scale appropriately. This was accomplished and the requisite runs were supported. This was
successfully accomplished and utilized in the experiments. Calls by individual nodes on the
terrain database did not overtax inter-node communications and performance as was expected.
In this, as well as other cases, the most critical performance measure was the perceived
acceptability by the users, operators, analysts, and managers of the experiment.

Having successfully implemented and tested a scalable computational environment for JSAF, we
contributed to the joint urban operation human-in-the-loop (JUO-HITL) spiral development. We
identified the appropriate centers of expertise to resolve each of the critical areas in a way that
allowed early implementation of SPP technology in Joint Experimentation. The continuing
challenge was to produce durable and robust solutions that stood the rigor imposed by the ever
changing needs of the USJFCOM. New capabilities in experiment initiation, entity control, data
logging and after action analysis were identified and were pursued, as described below.

3.1.8 Implement a system to log and analyze appropriate data
This task focused on implementing distributed and collated data logging and storage of
experimental results. The best technical description of this work can be found in the papers
authored by Dr. Yao in the Appendix. Developing collaborative planning and decision support
systems designed to establish user situational awareness present an additional challenge because

 14

of the reliance on human subjects as integral components of the command and control system.
Immersion of humans within virtual simulations, such as JSAF, requires an integrated data
generation and collection approach to achieve quantifiable results.

One of the initial decisions made by the JFCOM data management staff was to select Microsoft
Access2000® as the intermediate data store since it was already designed as the hlaResults
primary database. The team’s ability to rapidly prototype the Future After-Action Report System
(FAARS) during early development was facilitated by this decision. However, as the spiral
development process moved forward, new requirements surfaced for increasing the size of the
data storage capability for reasons explained below. The emerging result was a continued
improvement to the capabilities of the FAARS as it is adaptable to a variety of new Commercial
Off-The-Shelf (COTS) database products.

While Microsoft® has produced an easily mastered product for home and small office use, the
created databases within Access2000® are limited to two gigabytes. Experience showed that a
typical HLA federation with 35,000 entities will quickly overload an Access2000® database,
created using the utility hlaResults. It will reach this threshold within two to two and a half
hours of event runtime. A typical simulation day consists of 6 to 8 hours of continuous runtime,
requiring three or more databases to be created. A technique for selecting and processing
relevant data from each database (and taking into account overlaps within the data) was
developed by inserting the data into a much more richly capable database, MySQL, for a “roll-
up” into one total event period, to preclude retrieving data separately from each Access2000®
database. Subsequently, two hlaResults collectors were used during experiments in overlapping
periods so that continuous coverage of simulation data would be recorded.

Two major benefits accrued from the use of MySQL and sqlite. First, as they are obtainable as
open source, they can be obtained and distributed without cost or significant administrative
burden. Secondly, as open source, the code itself can be examined for performance enhancement
opportunities, customized code insertions and security robustness. While user interfaces may be
marginally more austere, they are invariably accessible by technically trained personnel likely to
use them.

The distributed logger made use of local embedded relational databases, implemented using
sqlite on each node of an SPP to execute queries and return results via an ad hoc protocol
implemented by a tree of aggregators. This work improved performance and provided additional
functionality. Performance was improved by using MySQL and PostgreSQL databases in lieu of
sqlite and through the use of data compression in the aggregators. Functionality was enhanced
by defining a higher-level portable protocol in the aggregators, by providing standard interfaces
for combining query results returned by multiple SPP nodes, and by providing methods to easily
redistribute data to a different topology of nodes. Tools were developed and implemented to
assist the experimenter in identifying, recovering and understanding the data that was stored.

A notional flow chart of the developed system shows important features and the complexity of
the code developed to serve the needs of the users and analysts at JFCOM.

 15

Figure 7 - Flow Chart of Data Logger System

Using this system, the Data Logger consistently logged one terabyte of exercise data each week
of an experiment. While this still required discarding most of the location, orientation and state
data for the clutter entities, it still represented a scalable approach, more limited by hardware
costs than design constraints. This terabyte reflected approximately a two order of magnitude
increase from the limits imposed by the previous system.

3.1.9 Continue to develop fault tolerant operations
The SPP implementation of JSAF was increasingly made fault tolerant and confirmed by
additional study and testing. One of the most glaring of the fault susceptible features was the
continued use of the tree routers. This resulted in all of the experimental data being run through
a single computer. The implementation of the mesh routers in the future should dramatically
reduce that risk. Critical aspects of the final implementation, based on the mesh router system,
included:

• A scalable interest management system
• No artificial barriers to the number of entities allowed
• Fault tolerance:

o No single point of failure
o Dynamic addition/deletion of nodes
o Early investigation of migration of entities across nodes

3.1.10 Implement SLAMEM on a cluster
The SLAMEM code was previously being operated on any number of single processor
platforms. Some initial studies on the appropriate parallelization of the SLAMEM code were
conducted and assistance was provided to the Toyon Corporation in efforts to make use of the
scalable capabilities of the Linux clusters. The JESPP team did an external review of the

 16

SLAMEM characteristics and identified several areas where the needs of the user seemed to
suggest a new program that would more accurately and dynamically model the sensors.
Specifically, the use of partial differential equation generated physics rather than subjectively
generated “look-up tables” would significantly improve both the responsiveness and validity of
the simulation. This work would be beneficial to the JSAF simulation and is suggested as a
potential follow-on effort.

3.1.11 Install and coordinate the new J9 HPCMP Distributed Center (DC) Cluster
Our team led the effort, which resulted in the award of a DC cluster to the USJFCOM by the
High Performance Computing Modernization Program (HPCMP). This important new
USJFCOM asset required significant coordination to maximize its utility to the Joint
Experimentation group. Initially, there was a need to expend significant amounts of time in
acceptance testing and coordination to satisfy HPCMP that the cluster was being well-used.
Subsequent to the installation process, there was a continuous need to coordinate with the
HPCMP and the remote sites where the clusters were located. Reports and presentations were
required to communicate the appropriate use of this asset.

The decision to split the cluster between two locations; Maui, HI and Dayton, OH; while some-
what cumbersome in use, proved time and again as most propitious, as if one center was down
for one reason or the other, the remaining cluster could effectively be used.

Based on the design selected by HPCMP, the JESPP team was able to effectively employ both
nodes by using one as a home of the simulation engine and the other as the resident processor for
logging and communications. The design decision to provide one site with a 60 gigabyte disk on
each node, but leave all of the disks on the other machine in a more easily configured cluster was
precipitated by the desire to make the one cluster a “swing machine,” allowing easy conversion
from UCLASSIFIED to SECRET operations. We determined that this was possible, but prob-
lematic. Stability and performance was impacted due to heavy “paging” onto the disk drives on
the mesh. Several workarounds were conceived and tested. The desire of JFCOM to have the
most stable platform would subsequently lead to the installation of disks on each node of the
second cluster.

Major achievements in this area would have to revolve around the successful implementation
and operation of meta-computed assets in a real-time, interactive simulation setting. Papers and
other exposition to the community seem to suggest the JESPP program is one of the very few
projects to consistently and effectively use interactive high-end computing.

3.1.12 Support communications, security and encryption
Not only is the simulation run by JFCOM distributed, but all of the processing and data
management is trans-continentally situated. Clearly, sites from throughout the country must
communicate effectively, securely and within organizational rules. JESPP personnel became
intimately familiar with many of the communications protocols supported by the HPCMP and
were instrumental in obtaining necessary changes when those were vital.

 17

The major new paradigm requiring some modification of the rules was the concept of interactive
high-end computing. Virtually all of the communications and security rules promulgated and
enforced by the HPCMP on its Defense Research and Engineering Network (DREN) assumed
and were designed to support batch computing. Interactive computing featuring tens of users
and hundreds of independently spawned code processes did not fit well into this milieu.

Supporting on-going communications and encryption efforts as they relate to high performance
computing required careful attention. These aspects became more critical as the use of
distributed high performance computers was coupled with USJFCOM’s desire to include remote
sites in the experiments being conducted. Trained and experienced personnel were provided to
ensure that this aspect enhanced, rather than inhibited, the achievement of USJFCOM goals.

Most dramatically, the JESPP personnel sought relief from the requirement that all users and
processes had to have secure log-in and Kerberized communications. This clearly would have
rendered operation impossible and the very restricted nature of the communications, i.e. all sites
were government facilities that were operated as if the were classified, even if operating at an
unclassified level. After significant review and consideration by HPCMP and the subject matter
experts, a modified procedure was established and operations were initiated. A notional diagram
shows the supported connectivity of virtually all of the runs.

Figure 9 - The Trans-Continental Connectivity, in the Original Tree Configuration

During the effort, the two centers effectively supported a number of events at JFCOM and were
able to demonstrate the utility of distributed, interactive, high-end computing.

4.0 Conclusions
The overall results of this project have met or exceeded the results sought by the Joint Forces
Command, Joint Experimentation Directorate. The capabilities of the JSAF code to represent
more than one million non-military SAF entities has been shown, the operational stability of the
system has allowed confident use by USJFCOM operators, performance is acceptable, security
issues have been dealt with and all of the assigned tasks have been accomplished.

 18

The code has been effectively operationalized and the ensuing operations have been successfully
supported. SPP computing was implemented, a new Distributed Center was stood up, the project
successfully was demonstrated to several government leaders and the science generated was
published in numerous conference articles.

It was consistently clear that USJFCOM could achieve their success in representing hundreds of
thousands of civilian and military entities only with the scalability afforded by the HPCMP
hardware and our expertise. This effort gave both proof of that assertion and gave reassurance to
those who feared instability.

Members of the USJFCOM J9 team reported to independent inquisitors that “…the SPPs were
the most stable part of this project…” in March of 2004 and that continued to be the fact for the
rest of the effort. The experience of the sites and of our personnel worked together to avoid
problems and produce results.

While providing the day-to-day operational reliability, our team also made several unique and
noteworthy advances in SPP operations; including scalable programming, security, data
management, data analysis, and visualization. Evidence of this noteworthiness was the fact that
several technical papers were presented at conferences and JESPP personnel were invited to
speak at three other professional conferences. The papers are included in the Appendix.

Further indicia of the value of this effort were the recognition by both the USJFCOM J9
Directorate, Maj Gen Woods, and the Joint Forces Commander, ADM Giambastiani. The latter
has now indicated a desire to advance the time schedule for providing this capability to the
warfighter.

Future work is needed and planned in the areas of full implementation of mesh routers, better
communications routing, fault tolerance, upgrade to the clusters, support for classified opera-
tions, distribution of simulation processes across several nodes where necessary, and the optimi-
zation of the initiation and control software package.

Test runs on the mesh router continued to show superiority in internode communications, but
complete acceptance into the CVS tree and day-to-day utilization is left for future efforts. The
current operation makes, and accepts, limitations in scalability that may not prove acceptable in
the future. Plans are made and commitments accepted that will allow full implementation in the
future.

Communications, as set forth above, is still running in a star configuration, with the incumbent
fault tolerance limitations. In the future, it is planned to implement and test the mesh router as a
meta-computing, Wide Area Network (WAN) architecture. This is anticipated to provide both
fault tolerance and performance gains.

Fault tolerance can further be advanced by distributing the simulation across several compute
platforms and, even, several states. Further, fault tolerance on one Linux cluster mesh will be
enhanced if individual simulation processes are “dealt” out and allowed to migrate. In general,

 19

the JSAF program is very amenable to simulation processes dropping out and being inserted
without a detrimental impact on stability.

Classified operations will present many new problems that will directly impact the JESPP team.
Experience has shown that any perturbation of the platform will impact the rest of the system in
ways that were not anticipated. On the other hand, SECRET operations may reduce the neces-
sity of Virtual Network communications and obviate the need for Kerberos.

Several of the simulation packages are sufficiently large to require a single node on their own as
opposed to the tens of thousands that may run under different circumstances. These single node
programs may benefit from being decomposed over several nodes.

 20

Appendix A – Publications

List of Papers

• Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao, “The Road to
Successful Joint Experimentation Starts at the Data Collection Trail”,
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003.

• Bill Helfinstine, Mark Torpey & Gene Wagenbreth, “Experimental Interest Management
Architecture for DCEE”, Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC) 2003.

• Robert F. Lucas & Dan M. Davis, “Joint Experimentation on Scalable Parallel
Processors“, Interservice/Industry Training, Simulation, and Education Conference
(I/ITSEC) 2003.

• Richard Williams & John J. Tran, “Supporting Distributed Simulation on Scalable
Parallel Processor Systems”, Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC) 2003.

• Dan M. Davis, Garth D. Baer & Thomas D. Gottschalk, “21st Century Simulation:
Exploiting High Performance Computing and Data Analysis”, Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC) 2004.

• Brian Barrett & Thomas D. Gottschalk, “Advanced Message Routing for Scalable
Distributed Simulations”, Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC) 2004.

• Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao, “Successful Joint
Experimentation Starts at the Data Collection Trail - Part II”, Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC) 2004.

• John J. Tran, Jacqueline M. Curiel & Ke-Thia Yao, “An Interdisciplinary Approach to
the Study of Battlefield Simulation Systems”, Interservice/Industry Training, Simulation,
and Education Conference (I/ITSEC) 2004.

The Road to Successful Joint Experimentation Starts at the Data Collection
Trail

Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao

M&S Team, Experimentation Engineering Department, J9 USJFCOM
Suffolk, Virginia

rgraeben@ida.org, grafuse@alionscience.com, rmiller@alionscience.com & kyao@isi.edu

ABSTRACT

Joint Forces Command has made great strides formulating the roadmap for conducting joint experiments. However,
success for the Command will be measured by its ability to present quantifiable results to support transformational
findings. The Services have considerable experience documenting requirements and articulating needs based on
quantifiable results. Weapons systems, sensors and related procurement developments lend themselves to statistical
testing (primarily through repetitive constructive simulation runs and live tests). The nature of joint experimentation
relies on a discovery-type of approach when dealing with 2015 (or later) weapons, decision support systems and
identifying the best methods for their utilization. The strengths in using human in the loop (HITL) immersion within
distributed virtual simulations (e.g., Joint Semi-Automated Forces (JSAF)), requires innovative approaches to data
collection and analysis. The correct approach will provide creditable and quantifiable results to strengthen the
Commander, Joint Forces Command’s rationale for transformation within DOD. This paper addresses methods for
achieving more creditable and quantifiable data support. The first section provides a short description of the spiral
development and data integration processes. The second section describes the flexible data collection toolkit used in
the initial verification of entity behaviors and performance and then used to extract and display the data generated
from the simulations. Finally, the third section describes a distributed framework for scaling the logger and analysis
tools to handle very large data sets--in the terabyte range--for meeting the Joint Forces Command, Joint
Experimentation Directorate’s need for a Distributed Continuous Experimentation Environment capable of
providing quantifiable results.

ABOUT THE AUTHORS

Bob Graebener retired after 25 years in the military in 1997. His last active duty assignment was as the Chief of
Modeling and Simulation at USACOM’s Joint Training, Analysis and Simulation Center. Mr. Graebener is currently
a Research Staff Member and team lead with the Joint Semi-Automated Forces (JSAF) program at IDA. In that
role, he has participated in several joint experiments sponsored by USJFCOM. He is currently working towards a
doctoral degree in Systems Engineering from GWU.

Gregory Rafuse is a data collection analyst and developer and is currently the lead developer for the data collection
toolkit. He is a Software Engineer with Alion Science and Technology. Mr. Rafuse has previously served seven
years with the US Army as a Field Artillery Crewman. He also possesses an AAS in Computer Information
Systems (CIS) from McLennan Community College and is pursuing a BS in CIS from Strayer University.

Robert Miller is a Senior Software Engineer with Alion Science and Technology. He brings over 11 years of
experience to the current effort of designing, coding, and testing software for the Future After Action Review
System. He holds a Bachelors Degree in Engineering from The Cooper Union School of Engineering and a Masters
Degree in Computer Science from the City University of New York.

Ke-Thia Yao is a research scientist in the Distributed Scalable Systems Division of the University of Southern
California Information Sciences Institute. Currently, he is working on the JESPP project, which has the goal of
supporting very large-scale distributed military simulation involving millions of entities. Within the JESPP project
he is developing a suite of monitoring/logging/analysis tools to help users better understand the computational and
behavioral properties of large-scale simulations. He received his B.S. degree in EECS from UC Berkeley, and his
M.S. and Ph.D. degrees in Computer Science from Rutgers University. For his Ph.D. thesis he implemented a spatial
and physical reasoning system that automatically generated grids for novel geometries for computational fluid
dynamics simulators.

21

cameras
Text Box
Appendix B

The Road to Successfuloint Experimentation Starts at the Data Colle
Trail

Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao

M&S Team, Experimentation Engineering Department, J9 USJFCOM
Suffolk, Virginia

rgraeben@ida.org, grafuse@alionscience.com, rmiller@alionscience.com & kyao@isi.edu

Joint Forces Command (USJFCOM) has made great
strides over the past few years in formulating the
roadmap and processes necessary to conduct joint
experiments. The roadmap covers initial concept
design through presentation of results to the Office of
the Secretary of Defense. The Joint Requirement
Oversight Council (JROC) is the responsible agent for
determining which recommendations are taken for
action, and more importantly, which are funded. The
Commander, USJFCOM’s objective is to “provide
actionable recommendations from experimentation
results to senior leaders to inform options for future
force investments” (USJFCOM, 2003 p.3).
USJFCOM's effectiveness in this environment will be
measured by its continuing ability to present
quantifiable results to support joint transformational
findings.

Today the modeling and simulation (M&S) and
operations research communities are faced with ever
increasing challenges to meet the demand for creditable
and quantifiable results. An initiative, currently
underway at USJFCOM, is attempting to leap ahead of
the demand by the creative integration of processes,
commercial off the shelf (COTS) products and scalable
parallel processors (SPP). This paper will address a
method for providing more quantifiable and accurate
data generated within large supercomputers running
human in the loop (HITL) virtual simulations and
federations of simulations used in support of future
joint experimentation.1,2

BACKGROUND

Leveraging simulation to support joint experimentation
has been the centerpiece strategy for USJFCOM

1 The authors caution the reader not to assume that
there is only one solution to this challenge. Frequently
a number of tools are required to bring distinct,
quantifiable results to the senior decision maker.
2 Federation. A named set of interacting federates, a
common federation object model (FOM), and
supporting Runtime Infrastructure (RTI), that are used
as a whole to achieve some specific objective
(Department of Defense, 1998).

because it provides a capability to rapidly prototype
futuristic concepts. The M&S toolkit includes
constructive as well as virtual simulations and, as the
recently concluded Millennium Challenge 2002 joint
experiment has demonstrated, live simulations will be
integrated when needed (USJFCOM, 2002).
Constructive simulations normally provide faster-than-
real-time capabilities and are excellent when one
requires statistical results to prove or disprove
experimental hypotheses. Virtual simulations offer an
environment that allows real people to be immersed
within the futuristic environment, an excellent medium
for evaluating decision-making processes.

Providing Immersive Synthetic Environments

Developing collaborative planning and decision
support systems designed to establish user situational
awareness present an additional challenge because of
the reliance on human subjects as integral components
of the command and control system. Immersion of
humans within virtual simulations, such as Joint Semi-
Automated Forces (JSAF), requires an integrated data
generation and collection approach to achieve
quantifiable results. Although HITL experiments offer
a great potential for exploring complex issues they are
a greater challenge to the data collection and analysis
team and analysts charged with providing quantifiable
results that will survive JROC scrutiny. Being able to
provide usable results is also challenged when “setting
the initial conditions” requires millions of entities to
generate realistic levels of civilian traffic, before one
even begins to assess future sensor or weapons systems
operating in the urban environment. Federating
simulations compounds the challenge, as interactions
between simulations have to be checked for accuracy.3
When sensor systems and radar systems are added to
the mix, one can imagine the large quantity of
generated data that must be logged, mined and
provided to the analyst as quickly and accurately as
possible. The enormity of this task was not lost on

3 Federate. A member of a High Level Architecture
(HLA) Federation. All applications participating in a
Federation are called Federates (Department of
Defense, 1998).

22

cameras
Text Box

USJFCOM as decisions made in 2002 and executed in
2003 will be realized when the Joint Urban Operations
HITL series of experiments in USJFCOM’s Distributed
Continuous Experimentation Environment gets
underway in 2004.

Analysis vs. Discovery

Before describing the joint experimentation data
collection strategy, a short description of the difference
between analysis and discovery experimentation is
warranted. Analytical data is largely derived from
statistical testing, applying controls over independent
and dependent variables so as to isolate the cause/effect
relationships. Constructive modeling has been a major
“toolset” in the analysis arena, primarily through its
ability to run faster-than-real-time (therefore providing
multiple runs to support statistical inquiries). Analysis
techniques have been very effective when the problem
can be framed with an expected outcome.

Discovery-type events, more often than not, rely on a
progressive understanding of what is unfolding, thus
requiring flexibility in tool design to explore new
avenues as they present themselves. Although
hypotheses exist, the number of dependent variables,
human interactions, and complexities preclude
adherence to rigorous statistical methods of analysis.

THE FUTURE AFTER ACTION REVIEW
SYSTEM (FAARS)

The key ingredients to the FAARS are the process,
tools and design of logger protocols that operate on
scalable parallel processors. The remainder of the
paper addresses these three areas. The first section
provides a description of the spiral development and
data selection and collection processes. The second
section describes the flexible data collection toolkit
used in the initial verification of entity behaviors and
performance and then used to extract and display the
data generated from the simulations. Finally, the third
section describes a distributed framework for scaling
the logger and analysis tools to handle very large data
sets--in the terabyte range.

THE PROCESS

Once the concept designers and operations researchers
have settled on the experimental concept, collaboration
with the M&S community should closely follow. A
process for successfully designing the simulation to
support specific measures of performance (MOPs) is a
recipe for success. Data collection development, when

dealing with multiple simulations federated across a
wide area network requires a commitment from all
functional areas, not just the data collection team.
Dependencies are created since the need for specific
interactions related to the MOPs must be generated by
the entities within the federation or simulation to
answer the operations research questions. Figure 1
provides a pictorial of what is involved in the spiral
development process (in this case for software).
.

Figure 1. Spiral Development Process (Boehm, 1988)

Identification of
what data to collect
begins here.

Data collection
testing begins here.

The following checklist will bring value to the process
and establish user confidence in the data and
simulations generating the data. The steps described
below were designed for a joint experiment supported
by the HITL virtual simulation, JSAF (Graebener &
Kasputis, 2000).

1. What question(s) does the experiment address?

-What hypothesis is being explored?
-Steps include “drilling down” or decomposing the
question into sub-elements.

2. What Data will answer the question?

-Sub-elements are further decomposed into metrics
that will support the answer in a manner favorable
to quantification.

-This process begins a spiral crosswalk between the
data analyst and the data collection developer to
ensure what is being asked for is provided.

3. How is the Data Generated?

-Further detail generated during the spiral crosswalk
identifies how the data is created and by what
means the data will be collected.

-In most cases there will be several methods used to
collect the necessary data, while automated data
generated from the simulation might be the goal,
observers monitoring the test participants could
also generate (and collect) data.

23

4. How is the Data Transmitted/Received?
Table 1 shows the three tests used to explore the
question above.4 Each test has a set of conditions
on the first line and then a solution or range of
solutions.

Table 1. Data Transmission/Reception Matrix

Test

Does Entity
Transmit?

Does Entity
Receive?

If answer is: Yes & if answer is: Yes
1 Then: Test to ensure enumerations are

accurately sent/received.
If answer is: No & if answer is: No

2

1: Then: Determine if data element can
be derived indirectly from other

interactions, or:
2: Create a new (experimental)

interaction, or:
3: Determine if data element can be
generated by non-simulation means?

If answer is: Yes & if answer is: No
or

If answer is: No & if answer is: Yes

3
1: Then: check to see if the interaction

field is empty, and;
2: Fill in the field with appropriate entry,

and;
3: Ensure enumerations are accurately

sent/received.

5. When do you need the data and in what format do
you need the data products (see Table 2)?

-Identify the data display interval or timings (left-
most column).

-The periodicity is negotiable between the data
analyst and the data collection developers. In some
cases performance issues could impact on how
often/how quickly one receives the generated data.

-The format (top row) relates to the following
headings:
(1) Raw data.
(2) Grouped.
(3) Combined.
(4) Disparate.
(5) Automatic Visual (Graphs).
(6) Manual Display.
(7) COTS Readable (e.g., SPSS).
(8) Final Form/Report Ready.
(9) Other.

4 If a gateway is required (e.g., HLA to/from DIS
(Distributed Interactive Simulation) further work must
be done to ensure an accurate mapping across the
gateway is established and tested.

Table 2. Data Format and Timing Checklist
Format 1 2 3 4 5 6 7 8 9
Timing

Immediate/near-
real-time

Overnight
End-of-Trial
End-of-Exp’t
Other

6. What types of data integration are envisioned for
post-experiment processing?

-By Time Segment.
-By Mission/Task.
-By Force Level.
-By Geographic Region/Area.
-Other.

7. What is the cost associated to achieve steps 4 thru 6?

-In processing time?
-In developer time and availability?
-In bandwidth size?
-In relation to other competing interactions?

THE TOOLS

This section describes a framework for using COTS
and modified commercial software for logging
simulation events and creating analysis tools. The
rationale for moving to a new approach in toolkit
design is discussed as well as a description of one of
the tools currently in use.

New/Innovative Approaches to Data Collection

In previous joint experiment events, the data collection
and analysis tools have been custom written
applications that collected, processed and performed
general analysis activities on a very specific and
limited set of data. Previous solutions did not include a
level of robustness and reusability necessary to meet
future requirements. Because of this, a new approach
was created to meet these anticipated demands.

The FAARS toolkit has been designed around a
flexible, COTS-based solution minimizing the amount
of specific software to be written. The philosophy
behind using COTS software over proprietary custom
software systems has been to allow concentration of
most of the development efforts into providing highly
flexible and responsive data extraction methods to
support the analysis tools and data displays for the end-
users. The FAARS toolkit provides near-real-time
event information and a post-event data analysis. The

24

near-real-time tools supports the verification and
validation processes used for quality control of the
simulation or federation generated data along with
specific, predefined statistical reports and summaries.
The post-event tools have been designed to perform
analyses in support of the MOPs and measures of
effectiveness (MOEs).

FAARS Toolkit Composition

The FAARS toolkit currently is comprised of the
following commercial software applications:5

Data Collection:

1. hlaResults v2.0.2 (2002)
2. Microsoft Access2000 (1999)

Data Presentation:
1. Near-Real-Time

a. Apache v1.3.27 (2003)
b. PHP v4.3.2 (2003)
c. ChartDirector v3.0 (2003)

2. Post-Event
a. Microsoft Excel2000 (1999)
b. Microsoft Visual C++ v6.0 (2002)
c. MySQL v4.0.11 (2003)
d. ChartDirector v3.0 (2003)

The core of the data collection is the hlaResults tool.
This package provides for the logging of both HLA and
DIS-based simulation data. The tool works by
intercepting RTI-transmitted information amongst a
given federation and storing the collected information
in a Microsoft Access2000 database. Figure 2
indicates the flow of data within the FAARS toolkit
environment.

Figure 2. Data Flow and Capture

The near-real-time solution is based on the industry-
proven Apache web server, the PHP (Preprocessor
Hypertext Preprocessor) scripting language and the

5 COTS application providers are listed in Reference
Section.

Chart Director graphing package. The web
server/scripting language combination was primarily
chosen to facilitate an independent, cross-browser,
operating system solution for providing information in
as-close-to-real-time as possible. The web server
scripts connect to the hlaResults-generated database
using industry standard ODBC (Open Database
Connectivity) and SQL (Structured Query Language)
commands. The returned information is then processed
within the script and presented to an end user via a
standard web browser.

The post-event solution is based on a custom-built C++
client interface to access/view data being stored in a
relational database (MySQL) using industry standard
ODBC and SQL commands. The C++ client interface
then processes the returned data and presents the
resulting information via a series of either Microsoft
Excel2000 spreadsheets, natively or via ChartDirector
graphics.

Data Relationships

Storing HLA-generated data in a relational database
requires an appreciation for the differences in the way
these two technologies handle information. A database,
being an information storage and retrieval system, is
geared towards eliminating data redundancy. An HLA
federation is optimized for data exchange, and
therefore is not subject to the limitations of a database.
These two goals, though not completely in
contradiction, need to be reconciled. Inasmuch as the
data is being generated in an HLA-oriented format, it
becomes necessary for the database to accommodate
the federation (and not the other way around). This
“accommodation” essentially amounts to a recognition
of the relationships between data attributes in different
objects. Such relationships, though not enforced by the
HLA federation, must be respected. The FAARS tool
development team needed to become highly conversant
with the FOM, the Object Model Template (OMT),
Federation Execution Document (FED) (a federation
agreement between various simulations and the current
RTI). From an understanding of how the various parts
work together in forming the federation the team
determined how the various fields were related and
how to “force” relationships between collected data.

To force relationships within data where none are
previously defined requires knowledge of the data and
the data format. FOM-related data is transmitted as
either an interaction between class objects or as a class
object status update. Also, there are various linkages
used to convey information about a simulation
transaction that occurs within the simulation.

25

Understanding hlaResults Collected Data

The hlaResults data collection software package
utilizes the OMT, FED and RTI components to
generate a “collector.” As part of the collector creation
process, a pseudo-schema for an Access2000 database
is created. This database contains tables representing
each interaction or object class as defined by the three
components. Each table contains fields representing
the “payload” for a specific update of the interaction or
class object. When the database is created, the
hlaResults-generated schema does not introduce nor
define any specific relationships between the various
interactions and class objects. Therefore, relationships
have to be imposed for the data to be truly relational. It
is necessary to decide which fields within the
interaction and class object table share common
information. Once this is done, a database schema is
dynamically generated within the FAARS toolkit and
applied to both the Access2000 database (used as the
immediate store) and the MySQL database (used as the
final “rollup” data store).

Lessons Learned: Evolving Methods and Tools

Flexibility was a going-in design objective for this
program. One of the initial decisions was to select
Access2000 as the intermediate data store since it was
already designed as HLA Results primary database.
The team’s ability to rapidly prototype the FAARS
during early development was facilitated by this
decision. However, as the spiral development process
matured, new requirements surfaced for increasing the
size of collect data storage capability for reasons
explained below. The emerging result is a continued
improvement to the capabilities of FAARS as it is
adaptable to a variety of new COTS database products.

A technical limitation in Access2000 is a 2 GB limit
for database sizes. Based on previous usage during test
events, a typical HLA federation with 35,000 entities
will cause an hlaResults-created Access2000 database
to reach this threshold within 2 to 2.5 hrs of event
runtime. A typical simulation day, designated by the
experiment technical lead, consists of 6 to 8 hrs of
continuous runtime, requiring three or more databases
to be created. A technique for selecting and processing
relevant data from each database (and taking into
account overlaps within the data) has been developed
by inserting the data into a MySQL database for a
“roll-up” into one total event period, to preclude
retrieving data separately from each Access2000
database. Currently, two hlaResults collectors are used
during experiments in overlapping periods so that there
is continuous coverage of simulation data being

recorded. Figure 3 shows the method for employing
collectors.

Figure 3. Collector Sequencing over Time

Processing Collected Data

After a simulation run is completed, the collected
database segments are processed into the single
MySQL database in the following sequence: First, a
database schema is applied to the MySQL database that
will represent the “rollup” of all of the data collected.
Second, the Access2000 database segments are put into
sequential order by their unique file names and internal
file creation timestamps. Third, each segment is
filtered to build a list of relevant tables from which
data is to be extracted. Fourth, the first Access2000
database is inserted directly into the MySQL database.
Fifth, subsequent Access2000 databases are processed
to ignore overlapping data by examining the difference
in timestamps between where the previous segment
ends and the next segment begins. Also, internal
record timestamps are adjusted with an offset so that
individual record timestamps represent time since
beginning of simulation run and not just for the
individual database segment. Finally, summarization
information is extracted and stored into new tables to
facilitate speed in reviewing common information.
Those reports that are processing intensive will be
generated and saved for post-event review.

Post-Event Data Processing

Once the simulation data has been processed and
inserted into the MySQL database, the MOP/MOE
tools are applied to the completed database to provide
predefined statistics for the event period. In
conjunction with these predefined reports, additional
reports and queries can be rapidly created based on
additional feedback and desires of the analyst. A
sample of predefined reports available for the end user
includes: Killer/Victim scoreboard, Entity Lifecycle
and Lifecycle Details, and “String” analysis charts.
Other MOP/MOE components are developed and
included with the toolkit based on input from the data
collection and analysis plan designed by the joint
experimentation users and analysts.

26

Figure 4. Sensor/Target Scoreboard Example

A Near-Real-Time Tool: Sensor/Target Scoreboard

An example of one of the tools used for near-real-time
analysis is the Sensor/Target Scoreboard. The
scoreboard is designed to provide insight into the
category of class object types being detected, the
specific sensor platforms and sensor modes. One
possible use of the Sensor/Target scoreboard is to
provide summary reports of sensor activity for use
during typical daily event briefings.

The scoreboard is divided into four layers of detail,
with aggregated sensor platforms versus class object
types summaries at the upper-most level. Figure 4
shows a sample Sensor/Target Scoreboard at the
aggregate level. The next level of detail (accessed by
clicking on a value in the table) displays the total count
of individual class objects of a specific type detected
by individual platforms and by specific sensor modes.
Subsequently, the next level of detail (by clicking on a
value in the displayed table) provides a list of specific
detected class objects as indicated by the selected
sensor platform and sensor mode combination from the
previous table. The final level shows the finite
information concerning a specific detected class object.
The information contained in this report includes
details of the sensing platform, the time of the
detection(s), the class object detected, location of the
detected class object, velocity of the class object (if
moving), and detected appearance bit mask value.

SPP & LOGGING DATA

Harnessing SPP for Logging and Analysis

This section describes a distributed framework for
scaling the logging and analysis tools to handle very
large data sets--in the terabyte range--for meeting J9
needs for the Distributed Continuous Experimentation
Environment. This tool is part of USC ISI’s Joint
Experimentation on Scalable Parallel Processors

(JESPP) project. One of the goals of JESPP is to enable
modeling of futuristic sensor capabilities, weapon
systems and complex battlefield environments by
providing the underlying computational and network
infrastructure.

Logging and analysis desired properties

Listed below are some of the desired properties for the
logger and analyzer framework. Several are inherently
contradictory, so design decisions have to be made to
balance them.

Scalability
The framework must be able to log and to process very
large volumes of data. Based on past experiences from
a Future Combat Systems (FCS) experiment, a partial
logging of simulation events for selective data analysis
requires about 5 kB/hr of data for each entity. Scaling
up to the desired million entity SPP runs would require
handling ~5 GB/hr. Logging all the simulation events
for full playback or comprehensive data analysis would
require over 200 kB/hr of data for each entity. For 1
million entities, the data rate is ~200 GB/hr. Five
terabytes of data would be collected over the course of
a 36 hr experiment.

Minimize resource contention
The simulation and the logger are running
simultaneously, both requiring computing resources in
terms of CPU, memory, disk access and network
bandwidth. The logger should avoid competing against
the simulations for resources.

Extensibility
The framework must facilitate the adding of new
functional capabilities to handle novel types of
analysis. As previously stated, goals and evaluation
criteria should be defined well in advance of the event.
However, it is not always the case and unanticipated
questions do frequently arise. The framework must be

27

flexible enough to incorporate additional functionality
without extensive modification.

Responsiveness
The framework must be able to respond to analysis
queries of interest within a prescribed time frame.

Reusability
The framework must be able to work with different
simulations and possibly with different HLA runtime
infrastructure implementations. Initially, this work
focuses on using JSAF and RTI-s (Calvin, et al., 1997).

Partitioning the data

One major design decision for a logger implementation
is to determine where to store the logged data. Previous
logger implementations for HLA simulations have
utilized centralized data storage schemes (e.g.,
hlaResults) to store events on a centralized relational
database. Typically, a centralized logger would self-
register as an active listener interested in all federation
events. The HLA runtime interface will then forward
all events generated by each simulation federate to the
logger. However, such centralized storage schemes are
difficult to scale up as the number of simulation
federates and number of entities increase.

Distributed storage schemes can overcome storage
bottlenecks. Instead of funneling all the data to a single
computer node, the data is partitioned and saved on
multiple nodes. Then the question becomes how to
partition the data. Possible partitioning schemes
include partitioning by event type, by geography, by
time, and by communication connection topology.

There are advantages and disadvantages for accessing
data from each partitioning scheme depending on the
type of analysis being conducted. For example, in order
to compute a Killer/Victim scoreboard, the analyzer
needs to access all the Damage Assessment Events. If
the data were partitioned by event type, then all the
Damage Assessment Events would be on the same
node. The analyzer only needs to perform local queries
to compute the Killer/Victim scoreboard. However, if
analysis involves examining interactions among
multiple types of entities, then the analyzer may need
to join multiple remote data stores. In this latter
scenario partition by geography may be a better choice.

If the desired analysis type is known, the logger should
choose the data-partitioning scheme that minimizes
remote data access. These partitioning schemes can be
viewed as ways of pre-fetching data to support faster
computation during analysis. Extra network bandwidth
is utilized to aggregate data during collection, in order

to improve responsiveness by minimizing
communication during analysis. See Figure 5 for three
representative types of data aggregation schemes.

C
ol

le
ct

io
n

B
an

dw
id

th
P

ro
ce

ss
in

g
B

an
dw

id
th

Centralized

Fully distributed

Intermediate

Figure 5. Data partitioning schemes based on
communication connection topology.6

Frequently the analysis type is not known beforehand
and arbitrarily choosing a partitioning scheme wastes
valuable bandwidth during the actual simulation run.
Also, sometimes multiple analysis types are desired
and implementing multiple partitioning schemes wastes
even more bandwidth. Resource contention between
logger and simulation is unavoidable, when possible
the logger should delay resource intensive operations
until after the simulation runs. In addition overly
aggressive data aggregation may result in
underutilization of SPP computing resources. In the
extreme centralized scheme only the CPU resource
from one node is available for processing.

One way to minimize imposing additional
communication load during collection is to partition the
data according to the communication connection
topology. For example, one type of connection
topology used for the SPP is the three-level tree. The
simulation federates sit on the leaves of the tree, while
the RTI router nodes sit on the internal nodes of the
tree. The simulation federates can only communicate
with each other through the routers. The logger can be
deployed on the routers to passively watch and

6 Ovals are simulations and squares are the loggers.
The centralized scheme expends network resources
during collection, but it requires no network
communication during processing. The fully
distributed scheme is exactly the opposite, which
requires no network resource during collection, but
expends network resources during processing. Of the
three schemes, the fully distributed scheme has the best
potential for utilizing the distributed computing
resources of the SPP.

28

collection events as they move through the router. The
advantage of passive loggers is that they impose no
additional load on the network, since they do not
subscribe to interest channels (which forces additional
events to be sent). However, the passive loggers
attached to routers will fail to capture all the events on
RTI implementations (e.g., RTI-s) that perform source-
side squelching. If no simulation federate declares an
interest to the events then source-side squelching RTI
will drop the simulation events before they are sent to
the router. To capture all possible events passive
loggers attach themselves to the simulation federates
themselves before the RTI has a chance to drop the
events. Otherwise, the loggers have to become active
and explicitly register interest to the squelched events.

Implementation

Based on discussions with potential users and
simulation developers, the team came up with three
implementation requirements:

• The logger must capture all simulation events.
HITL events are very difficult to repeat and
the users were concerned that passive data
collection would leave gaps.

• The analyzer must be extensible. The user is
sometime vague about final analysis
products/results, so the analyzer must be
flexible enough to handle a variety of analysis
types.

• The logger/analyzer must minimize resource
contention with the simulation. The simulation
developers expressed a strong reluctance to
give up simulation performance.

For the initial iteration the team plans to use a fully
distributed data storage implementation. Also, to
further minimize resource contention the plan is to
insert very lightweight probes into the simulations to
gather the needed events. Under an HLA simulation
environment, federates communicate with each other
using the RTI. Conceptually one can place a wrapper
around the RTI to intercept all events sent through the
RTI. Before forwarding these events to the RTI layer,
the wrapper uses non-blocking interprocess
communication (IPC) to send the contents of these to
separate local logger processors. Since the local logger
processor resides on the same node, no network
bandwidth is consumed (see Figure 6).

The existence of the wrapper is hidden from the
federates, so no modification to simulation federates is
needed. Many current RTI implementations, such as
RTI-s, RTI-NG and MÄK, provide Interceptors that

facilitate wrapper implementation. In addition RTI-s
provide dynamic Interceptor loading capabilities, so
even recompilations are not needed.

Figure 6. Node level view of logger

The local logger process provides a framework for
multiple components to register and receive the
intercepted events. For example, note the Archiver and
Filter components in Figure 6. The Archiver
component faithfully stores all intercepted events to
disk. The Filter can be programmed to gather event
subsets. Both the Archiver and Filter data stores are
accessed through the Query Processor, which exposes
an SQL-like API. The actual format of the data stores
is exposed. However, for the initial implementation the
plan is to store the data in text format. Based on past
experiences with logging for network packet analysis,
the team has found text format to provide a good first
order implementation. The logged data is easy to
perform a sanity check on through visual inspection,
and easily manipulated with regular Unix tools. The
query performance in most cases is acceptable.

For the local data stores the team has also considered
using full-fledged relational databases, which provide
the flexibility to handle general SQL queries. However,
for the initial prototype the decision was not to use
relational databases due to concerns that they may not
be able to keep up with the volume of data during
insertion. Also, logistically it is difficult to set up
hundreds of databases (one for each node for each
simulation run). In most cases nodes on cluster
machines are reserved for fixed time periods. After the
time periods expire the local disks are typically wiped
clean.

Each Query Processor only provides a partial view of
the simulation, since it can only access the data from
the local data store. The SPP analyzer provides a
framework for integrating multiple local stores to offer
the appearance of a centralized data store to application
analysis programs (e.g., Killer/Victim scoreboard, etc.).

29

The scoreboard application sends a SQL query to the
root Aggregator (See Figure 7). This query is replicated
and forwarded to lower level Aggregators until it
reaches the Query Processors at the leaf nodes. Then,
the Aggregators merge the results of the query, and
send the tables back up the tree. For the initial
implementation, the plan is to implement query
replication and simple result table merging/sorting
operations within the Aggregators. In the future, there
are plans to add metadata descriptions to local data
stores to enable more advanced processing within the
Aggregators.

Figure 7. System level view of the logger across
the nodes.

CONCLUSIONS

Being able to support senior decision makers with
quantitative results does not have to be an
insurmountable obstacle when using HITL simulations
such as JSAF. Experience being gained at USJFCOM
in harnessing scalable parallel processors to do data
logging across the M&S federation will provide the
technological base to better support the future needs of
joint experimentation. Spiral processes and data
collection tools round out the knowledge set that will
enable quantitative data to be verified, validated and
employed in the Department of Defense’s quest to
transform the military. This exciting area of simulation
work is just a segment of the overall support found in
joint experimentation, but a critical player, as the
prudent application of public funds needs to be as
effective as possible.

ACKNOWLEDGEMENTS

The authors wish to thank the JSAF M&S and SPP
team members involved in this innovative undertaking.
Data collection and analysis is a critical piece of the
puzzle, but the people are the key to creative
advancement.

REFERENCES

Apache HTTP Server. vers.1.3.27 [Computer
Software]. Retrieved May 29, 2002 from
http://www.apache.org.

Boehm, Barry W. (1988). A Spiral Model of Software
Development & Enhancement. Computer 21(5), 61-72.

Calvin, J., Chiang, C., McGarry, S., Rak, S., Van
Hook, D., & Salisbury, M. (1997). Design,
Implementation, and Performance of the STOW RTI
Prototype (RTI-s), Simulation Interoperability
Workshop, 97S-SIW-019, Mar 1997.

ChartDirector. vers.3.0. [Computer Software].
Retrieved May 12, 2002 from
http://www.advsofteng.com.

Department of Defense. (1998). DOD Modeling and
Simulation Glossary, 1998 [Manual 5000.59-M].
Retrieved November 6, 2002 from
https://www.dmso.mil/public/dod/policy.

Graebener, R.J., Kasputis, S. (2000). The Evolving
Role of Analysis in Complex Decision-Making, Institute
for Defense Analyses Document D-2415, (2000).

HlaResults. vers.2.0.2. [Computer Software]. Retrieved
November, 18, 2002 from http://www.virtc.com.

MySQL. vers.4.0.11. [Computer Software]. Retrieved
May 12, 2002 from http://www.mysql.com.

PHP. vers.4.3.2. [Computer Software]. Retrieved June
10, 2002 from http://www.php.net.

USJFCOM (2002). Millennium Challenge 02 & the
Joint Experimentation Federation. October, 2003.

USJFCOM (2003). Campaign Plan 2003-2009
Information Briefing. March 13, 2003.

30

Experimental Interest Management Architecture for DCEE

Bill Helfinstine, Mark Torpey Gene Wagenbreth
Lockheed Martin Information Systems Information Sciences Institute

Burlington, MA Marina Del Rey, CA
Bill.Helfinstine@lmco.com, Mark.Torpey@lmco.com genew@isi.edu

ABSTRACT

The Distributed Continuous Experimentation Environment (DCEE) is a permanent simulation system and facility
that is being designed and assembled by the US Joint Forces Command (USJFCOM) to provide a capability to do
simulation-backed experimentation without incurring heavy integration and ramp-up costs. Among the several
thrusts of the DCEE system is the capability to do large-scale human-in-the-loop experiments in the spirit of the
Millennium Challenge 2002 experiment, as well as very detailed representations of joint urban operations scenarios.
Additionally, the DCEE system will be used in support of a number of smaller-scale experiments and training
events, such as Limited Objective and Multinational Experiments.

In order to provide a system that can scale to a richer and more expansive world, we need to increase the
computational power available to produce the environment. However, this leads to a classical problem of parallel
computation, where the communications requirements of the system become the bottleneck, and additional
computation adds no additional capacity to the system.

This paper describes the architecture that we have prototyped to address some of the problems of data
communications scalability. It discusses the interest management techniques that have been used in the past, and
how those experiences influenced the prototype design. It talks about the technology that provides finer resolution
interest management than simulations have had in the past while allowing better scalability. It explains the
limitations of the prototype system and discusses some possible approaches to addressing them. Finally, it describes
some likely future requirements of the DCEE system, and talks about how the architecture would have to change in
response.

ABOUT THE AUTHORS

BILL HELFINSTINE is a federation developer for the USJFCOM J9 Experiment Engineering Department and a
developer and integrator of JSAF (Joint Semi-Automated Forces), as well as primary maintainer and developer of
the RTI-s experimental RTI. He has worked in M&S for 9 years, with the last several in support of JFCOM-
sponsored exercises, culminating in Millennium Challenge 2002. He is a Staff Software Engineer at Lockheed
Martin Information Systems Advanced Simulation Center (LMIS-ASC) in Burlington MA. He received his B.S. in
Computer Science and Engineering at the Massachusetts Institute of Technology.

MARK TORPEY is a federation developer for the USJFCOM J9 Experiment Engineering Department and the lead
developer and integrator of JSAF (Joint Semi-Automated Forces). His 8 years of M&S experience have been
largely in support of JFCOM-sponsored exercises including Millennium Challenge 2002, Unified Vision 2001, and
Attack Operations 2000, as well as the DARPA STOW program. He is a Staff Software Engineer at Lockheed
Martin Information Systems Advanced Simulation Center (LMIS-ASC) in Burlington MA. He received his M.S.
and B.S in Computer Science at the University of Massachusetts.

GENE WAGENBRETH is a parallel processing systems analyst with Information Sciences Institute in Marina Del
Rey CA. He has 30 years experience with a range of applications on parallel processors and supercomputers. He
received his B.S. in Mathematics and Computer Science at the University of Illinois at Urbana-Champaign.

31

mailto:Bill.Helfinstine@lmco.com
mailto:Mark.Torpey@lmco.com
mailto:genew@isi.edu
cameras
Text Box
Appendix C

Experimental Interest Management Architecture for DCEE

Bill Helfinstine, Mark Torpey Gene Wagenbreth

Lockheed Martin Information Systems Information Sciences Institute
Burlington, MA Marina Del Rey, CA

Bill.Helfinstine@lmco.com, Mark.Torpey@lmco.com genew@isi.edu

THE DCEE

The Distributed Continuous Experimentation
Environment (DCEE) is a facility and a capability
being designed and assembled by the US Joint Forces
Command (USJFCOM) for exploration of concepts in
joint warfighting. (Ceranowicz et al 2003) One major
component of the DCEE is a permanent simulation
installation to provide the capability to do simulation-
backed experimentation without incurring the major
integration and ramp-up costs that previous
experiments have incurred.

The simulation capability that will be provided by the
DCEE is based on the Joint Experimentation
Federation (JEF) that was assembled for the
Millennium Challenge 2002 (MC02) experiment.
(Ceranowicz et al 2002) This federation provides a
framework for the individual services to bring
simulation capabilities to a joint virtual world. It
provides concept developers the ability to experiment
with large-scale battles and situations in a platform-
level human-in-the-loop style.

However, the DCEE is not simply designed to be a
snapshot of the MC02 version of the JEF; it is designed
to evolve and expand to encompass new capabilities
and fulfill new requirements as they arise. Therefore,
we must keep pushing the technology in advance of the
requirements, or the DCEE won’t be used. The whole
point of the DCEE simulation system is to make it easy
and quick to set up a situation and simulate it, in a
brainstorming style, in order to bring Joint
Experimentation to its full potential.

The simulation component of the DCEE is
implemented as a High Level Architecture (HLA)
federation. (Dahmann et al 1997) It is an aggregation
of a number of simulation systems, each of which has a
particular focus on a different facet of the battlefield.
However, since many of the simulations that make up
the DCEE were originally designed to interoperate
using the DIS protocols, (IEEE 1998) they were
designed to support scenarios that are in the size range
that is supported by DIS—which typically has an upper

bound on the number of simulated platforms in the low
thousands. This leads to another issue for the DCEE,
that of providing a simulation capability that can
handle the progressively larger scenarios that the
DCEE is designed to handle.

SCALABILITY

One major thrust in the world of Joint Experimentation
is that of scalability. The simulated world of MC02,
while larger than any others created previously, is not
big enough or detailed enough to play out the
situations that JFCOM wants to examine. The DCEE
must be able to provide a larger, more detailed
environment, both in terms of numbers of simulated
actors, and the simulated natural environment they
interact within.

Table 1. Scalability Achievements Over Time

Event Object
Count

Max Objs
Produced

PerFederate

Max Objs
Consumed

PerFederate
STOW97 7000 400 500
J9901 40,000 5000 5000
AO00 160,000 20,000 50,000
MC02 50,000 30,000 30,000
SPP 1,500,000 15,000 70,000

As is shown in Table 1, the number of simulated
objects that make up large federations has been
steadily increasing, with the exception of MC02, in
which it was more important to integrate a large
number of new models. The trend towards larger
numbers of objects will continue as we move forward,
simply because the simulations are not yet capable of
portraying a full-scale situation at full accuracy. With
the increasing capabilities of computers and networks,
we believe that we will be able to produce such a full-
scale scenario, but there are still a large number of
open issues remaining, both in how to properly control
such a simulation, and in how to usefully use and
observe such a simulation.

32

mailto:Bill.Helfinstine@lmco.com
mailto:Mark.Torpey@lmco.com
mailto:genew@isi.edu
cameras
Text Box

There are a number of factors that limit the size of the
simulation that we are able to produce in a system like
the DCEE. The computation cost of simulating the
objects that make up the world and the interactions
between them is the most straightforward of these
factors. The communications overhead of sharing
these objects between the various simulators introduces
another major cost. The final and most complex factor
is the effect of the objects simulated by other systems
on the local simulated objects.

The computational factor is a straightforward problem
to solve, simply by adding additional hardware to the
system. However, this solution is constrained due to
space restrictions and financial restrictions, and
therefore the system is limited in how large and how
quickly it can grow.

The communications factor is also constrained by the
amount of funding available to support the networking
hardware and services to run an exercise.
Additionally, there is a significant lead time
requirement in order to get networks provisioned and
security requirements fulfilled.

The cost of incoming data is still a major subject of
research. Each remote vehicle that is received by a
simulator adds load to that system. One technology
that is often used to reduce the load on a system is
interest management. This lets each simulator describe
what data might affect its simulation, and the
networking infrastructure filters the data that the
system needs to consider. While interest management
helps an enormous amount, there are cases where it
fails simply due to the amount of data requested.
(Brunett & Gottschalk 1997)

SCALABLE PARALLEL PROCESSORS

In searching for a possible solution to the first two
pieces of the scalability dilemma, we turned to another
area of research that has been exploring the areas of
scalability and parallelism. The scientific
supercomputing community has been exploring the
limits of scalability for many years. Furthermore, this
community has led to the creation of government-
owned and operated High Performance Computing
(HPC) centers, many of which are available for use
with little lead time.

The HPC centers provide a variety of types of systems,
most of which fall into the general category known as
Scalable Parallel Processors (SPPs). These systems are

defined by their large number of individual CPUs that
are connected by a high speed network.

One of the major types of systems run by the HPC
centers is the Beowulf cluster. (Sterling et al 1995)
Beowulf clusters have become popular systems in the
world of HPC systems because of their low cost for the
amount of power they provide. A typical configuration
of a Beowulf cluster is several hundred commodity
PCs running Linux connected with a multi-gigabit
network, with custom resource allocation and parallel
machine software running on them. Since these
clusters are similar to the systems the DCEE uses, we
decided to concentrate on using these systems to
provide a huge amount of computation and
communication resources, and thereby address the
time, money, and space restrictions on scalability in the
DCEE.

INTEREST MANAGEMENT

The third piece of the scalability question is how to
handle the large quantities of data that we can now
generate using the capabilities of the SPP systems. We
have spent quite a bit of time optimizing the simulation
systems to reduce the load imposed by incoming data,
but there is an inherent polynomial factor in all
simulation systems, simply because vehicles interact
with nearby other vehicles, and therefore as vehicle
density increases, processing per vehicle increases as
well.

In particular, sensor processing is typically an O(n2)
operation on vehicles in a local area. There have been
several attempts to mitigate this load through
alternative sensor approaches (McGarry & Torpey
1999) (Lorenzo et al 2000) (Kwak & Andrew 2002)
but these approaches require additional simulation
changes to support them. Due to the legacy nature of
many of the DCEE simulation models, these
approaches are difficult to implement, since they
require modifications to all the different models that
are used. This also limits the flexibility of the system,
since new simulations have additional requirements
over their existing capabilities in order to interoperate
with the rest of DCEE.

So, it is still necessary to reduce the quantity of data
coming into each simulation to the minimum that they
need in order to operate correctly. In general, only the
individual simulator can determine what data is
interesting, and only at runtime, since the information
needed is based on the situation that the simulator is
modeling. Therefore, interest management is a

33

dynamic problem, and needs to react and adapt to
changing data requirements by all the components of
the system.

This dynamic interest specification and handling is
performed by the Data Distribution Management
(DDM) functionality of the HLA. The HLA Run Time
Infrastructure (RTI) software provides an API to the
simulations that allows them to specify what data is
interesting in a dynamic fashion. The HLA provides a
generalized, abstract way to specify data and interest,
by representing data domains as multidimensional
spaces, and interest and data specifications as regions
within those spaces. (Morse & Steinman 1997) See
Figure 1 for a two-dimensional example of how DDM
represents interests and data based on overlap of
regions.

Figure 1. Subscription and Publication Overlap

There have been a number of different DDM designs
in several RTI implementations, each of which
represents spaces and regions in different ways. The
most scalable implementation we have found so far is a
statically-assigned grid representation that represents
spaces as multidimensional grids, and regions into
subsets of the grid. This leads to a fast mapping of
interest to grids without any communications and with
a simple algorithm. (Helfinstine et al 2001) See
Figure 2 for an example of how Figure 1 would be
represented in a fixed-gridded implementation.

Subscription Region Publication Region

Figure 2. Regions Snapped to a Grid

Subscription Region Publication Region

MULTICASTING

The main communications capability that is provided
by the HLA is a publish/subscribe capability that
delivers each message to multiple receivers. This
capability is often implemented using Internet Protocol
(IP) multicast, (Deering 1989) which provides support
for point-to-multipoint communications with dynamic
subscription changes, over a range of different
networking technologies.

However, this presents a problem when trying to run
on SPPs, which typically do not support IP multicast.
Depending on the type of SPP, it may not support IP at
all, since there are many ways to interconnect
processors that do not look like a traditional network.

However, SPPs do support message-passing
communications, either using IP, as Beowulf systems
do, or with some other technology. In order to provide
a standardized means of doing message-based
communications, the HPC community has standardized
on the Message Passing Interface (MPI) as a common
API for building parallel programs that express their
parallelism in terms of messages. (MPI Forum 1995)

So, it became clear that we would need to build a
mechanism that would provide the many-to-many
semantics of multicasting while using a
communications technology that only supports point-
to-point. Furthermore, we also need to maintain our
existing capability to run the simulation in a Local
Area Network (LAN) environment, since user
interfaces and other DCEE federates would not be
supported by the SPP.

34

 Intersere/Istry Tg, Si

This led us to examine the work that was done for the
Synthetic Forces Express (SF Express) program which
investigated running the ModSAF simulation on SPP
systems in the 1997 timeframe. (Burnett & Gottschalk
1997-2) This work demonstrated a fairly
straightforward way to provide an emulation of the
capabilities of multicast using router processes running
on SPP nodes to arbitrate the communications and do
data duplication and forwarding to appropriate
receivers. (Burnett & Gottschalk 1997)

Another interesting body of work that uses a similar
networking architecture is being pursued by the
DARPA Active Networks program. (Dorsch et al
2002) In their system, software router processes
perform data routing to the appropriate recipients in a
similar fashion to the SF Express router nodes. This
project uses direct region matching to do filtering,
which is more precise, but less scalable as the number
of regions increases.

RTI-S

In order to construct a system that runs on an SPP and
supports HLA federations, we needed an RTI
implementation that would use router processes to
communicate within the federation. The particular
implementation that we used to form the basis of this
system is the RTI-s subset RTI implementation.
(Calvin et al 1997)

We chose this implementation for several reasons. It
was available to us with source code, and is familiar to
us from its use in previous experiments, so it was
easily modifiable to use the new communications
system we were building. It has much less code than a
full RTI implementation, which makes it much easier
to understand and extend. It scales well, and has a
fairly small memory footprint. Finally, it has a very
flexible implementation of DDM, providing multiple
static inset grids that allow detailed tuning of interest
specifications. (Rak et al 1997)

COMMUNICATIONS ARCHITECTURE

We put together a design for the communications
architecture based on the concept of stackable protocol
modules. We analyzed the existing RTI-s
communications code and refactored the functionality
it provided into several pieces.

The original RTI-s network interface is composed of
the stream manager classes, which provide single-

sender to multiple-receiver message sending, receiving,
and subscription, and the message buffer class, which
provides an interface to messages. Below this
interface, the infrastructure provides message bundling,
to reduce the packet count by aggregating multiple
small messages into each packet, and fragmentation, to
split large messages into multiple packets and
reassemble them on receive. Finally, it sends and
receives the actual packets using IP multicast.

Then, these main components of the communications
infrastructure were separated out into chained protocol
modules, and given a standardized interface to ease
extension and flexibility. We then added additional
modules that send and receive packets using point-to-
point TCP and point-to-point UDP. Finally, we added
a module that translated generalized subscription
requests into a message that states the current list of
subscriptions, which is sent across the point-to-point
connection and remembered by the receiver. Figure 3
shows three possible configurations for an RTI
communications structure, with the three columns of
protocol modules below the stream manager.

In order to operate on SPP systems that use MPI as
their connectivity basis, we built an MPI send and
receive module. However, we were worried about the
fault-tolerance effects of MPI, and since we were
running on Beowulf clusters, which support IP
connectivity, we ended up using TCP for our prototype
events.

 RTI Ambassador and Federate Ambassador

Federation
Manager

Subscription
Manager

Object
Manager

Transport
Manager

 Stream Manager

Bundler

Ratelimit

TCP conn

Bundler Bundler

MulticastEmul MulticastEmul

Ratelimit

IP multicast

Fragment

Fragment

UDP conn

or or

Figure 3. Three Example Configurations of the RTI-s

Communications Infrastructure

35

This general model of protocol modules has allowed us
to experiment with additional message transformations
depending on our needs. In this vein, we built a
module that compresses the data across a connection,
when our bandwidth is low and we have available CPU
time. For testing purposes, we also built a module that
simulates a lossy network, and which randomly drops
incoming or outgoing data with a specified loss rate.
We see this as a very convenient way of integrating
future data transformations as they become necessary.

ROUTER DESIGN

Once we had a way for the RTI to send and receive
data in a point-to-point fashion, we needed a router
implementation that would receive the data from each
federate and forward it to the clients that subscribed to
it. As an initial implementation, we built a simple
router process that reuses the RTI’s flexible connection
code, receiving the data and processing it in the same
fashion as the RTI. Figure 4 provides a diagram of a
router that is routing between three connections.

Figure 4. Simple Router Design Routing Between
Connections to Three Federates or Other Routers

In order to send messages to only those receivers that
want to receive it, each connection tracks what the
receiver’s subscriptions are. Therefore, since each
connection has knowledge of what the receiver wants
to hear, it can filter outgoing data before it makes it
through the protocol chain. Since each side of each
connection knows this information, if no listeners in
the system want to hear a particular piece of data, it
won’t be sent out of the originating machine. This
aggressive source-side squelching of data is a very nice
side-effect of the router design.

However, in order to accomplish this, we need to send
subscription information across each link in both

fairly simple-- a router’s interest is the union of all its
connections’ interests. Therefore, the two major things
that a router must do is to forward incoming messages
to all other connections, and update interest
information on all other connections when one
connection changes.

directions. In the case of the router, it turns out to be

TOPOLOGY

his simple router architecture is quite functional, but

Figure 5. Simple Tree-Based Router Topology

ecause of this, we also built a second router

Figure 6. Triplet-Connected Mesh Topology

e b c of

T
it does have some significant problems. In particular,
it does not handle cycles in the graph of routers. Each
router expects to be able to forward all incoming
messages to all receivers. If one of those receivers is a
router that forwards a message to a router that has
already forwarded it once, the routers will send data in
a loop forever and overload the system. However, this
implies that these routers can only be set up in a tree
structure if we have more load than a single router can
handle. This is obviously not a scalable design.

B
implementation based on the up/down fully-connected
mesh topology that was explored by the SF Express
project. Unfortunately due to schedule pressure, we
have not yet been able to test this design fully.

W elieve that we need to investigate the topi
topology more, and look into new ways to organize the
communications between the various components of
the federation. In particular, when Wide Area Network
(WAN) connections between multiple SPP systems are
introduced, being constrained to a tree structure can
result in very heavy data loads to one of the sites,

… …

 Data Router

TCP conn

Bundler Bundler

MulticastEmul MulticastEmul

Ratelimit

Fragment

UDP conn

and
TCP conn

Bundler

MulticastEmul

and

To node 1 To node 2

To node 3

… …

36

Inteice/Industry Training, Simulat

which is a very expensive solution to a software
limitation. Further, WAN connections have a much
lower bandwidth than SPP interconnects or LAN
connections, and therefore it makes sense to investigate
specialized connection methods across WANs, and
different tradeoffs in the design of the communications
setup.

INTEREST MANAGEMENT IMPROVEMENTS

ne of the results of this new messaging architecture

owever, the existing code began to perform poorly,

imilar changes were made throughout the RTI code,

inally, a centralized means of recording statistics

PROTOTYPE EVENTS

e ran two prototype events, in which we

 December 2002, we were able to generate over

 March 2003, we ran an even larger event, generating

oth of these events were focused on testing the

FUTURE REQUIREMENTS

O
was that we began to run into limitations of the RTI-s
interest management infrastructure. In particular, we
wanted to expand the number of interest states from the
previous maximum of 3000 to 100000 or more.
Previously we were limited by the capabilities of IP
multicast routers, which begin to fail after roughly
3000 multicast groups, but with our own router
implementation, we no longer are subject to these
limits. Since the efficacy of the static grid interest
management scheme is determined by the number of
interest states, the more states that are available, the
smaller the grid cells are. As the grid cells become
smaller, less unwanted data will be delivered to the
federate.

H
due to the use of arrays of integers to represent the list
of interests of a particular subscription. In order to
scale the number of interest states up, we had to refit a
number of internal data types in RTI-s to be more
efficient, both in storage usage and in access time. In
particular, the list of interest states was changed to be
represented as a sparse bit vector implementation, with
a fixed-block-size representation. This provided a way
to quickly determine interest overlap as well as a fast
means of calculating the union of interests in the
router. Further, it resulted in a compact representation
that could easily be sent over connections with a fairly
small overhead.

S
in many places where the assumption was that an array
of values with an entry for each interest state would be
acceptable, we had to change to a tree representation or
a hash table in order to not consume large amounts of
memory. Additional changes were required to provide
a means of associating objects with their interests in an
efficient fashion.

F
about data amounts and counts was added, in order to
be able to pinpoint pieces of the system and what was
causing slowdowns. With the existing RTI-s capability

to examine internal information, this allows a remote,
distributed debugging capability that was extremely
useful in monitoring the system as it ran.

W
demonstrated that it is possible to generate enormous
numbers of vehicles in a very large virtual
environment, using SPP systems. Both events were
run using a subset of the DCEE federation, composed
of the JSAF simulation GUIs, the JSAF simulator
running aircraft, ships, and ground combatants, and the
JSAF clutter simulator providing background and
civilian traffic.

In
1,000,000 vehicles, using a terrain that covered the
entire Pacific Rim. The simulation ran on the
University of Southern California’s Beowulf cluster,
and operators and observers were located at Joint
Forces Command in Suffolk, Virginia, as well as at
Information Sciences Institute in Los Angeles. We
were able to use 50,000 interest states to provide a
fairly precise specification of interests, in several
geographically disparate simulated locations.

In
over 1,500,000 vehicles on the same terrain database,
but located in different areas with more terrain detail.
We ran on the Huinalu Beowulf cluster at the Maui
High Performance Computing Center and the ASC
Beowulf cluster at Wright-Patterson AFB, with
observers in Suffolk and Los Angeles again. We also
increased the number of interest states to 100,000
without adverse effect.

B
functionality of the new system, and showed that we
can indeed generate a very large simulated
environment. They also demonstrated that we have
quite a bit of additional work that we can do, in order
to make the system viable for the end users. In
particular, WAN latencies and inefficiencies in the
simulation’s control protocols combine to make the
user interfaces very sluggish. The tree nature of the
routers also became a point of failure when the system
was under its heaviest loads. We suffered a number of
router failures due to data overload, and we are still
working to address these.

37

cameras
Text Box

We still fac to resolve
 order to make the use of SPP systems possible for

uirement is that we need to make it
uch easier for non-experts to acquire time on SPPs

hat we must have a way
r simulations running on SPP systems to participate

ssue that we are beginning to investigate
 how the SPP will help analysts do After Action

d to
vestigate is the issue of control. As we scale up

CONCLUSIONS

The use of Scalable Parallel Processor systems has a
reat deal of promise in building larger and more

nt routers to
rovide data distribution gives us a great deal of

ditional dimensions that are worth
xploring, both in better integration into DCEE, and

This material onsored by
e Air Force Research Laboratory under agreement

NCES

Brunett, S. & Gotts An Architecture
for Large ModSAF Simulations Using Scalable

B le

ModSAF Simulations With More Than 50,000

C ., Evans, J.,

& Hines, J. (2002). Reflections on Building the

nd

Ceranowicz, A., Dehncke, R., Cerri, T., & Blank, J.,

(2003). Moving toward a Distributed Continuous

e a number of issues that we need
in
DCEE. The events that we have run so far show major
promise, but have not yet demonstrated that we are
able to fulfill the DCEE’s flexibility and ease-of-use
requirements yet.

The first major req
m
and execute the system on them. It currently is a fairly
involved process that takes several people to
accomplish. This is a major project that is already
underway. (Williams & Tran 2003) An initial version
of the MARCI launch and control system was tested at
the March event, and it is undergoing further
development and refinement.

Another major requirement is t
fo
in the DCEE federation. The primary reason we
cannot simply plug the SPP systems into the DCEE is
that the DCEE uses the enhanced version of RTI-NG
developed for Millennium Challenge 2002, (Hyett &
Wuerfel 2003) and the SPP uses RTI-s with point-to-
point routers. Since they use different RTI
implementations, they run in two separate HLA
federations, and we need to build a federation gateway
that will allow us to bridge data back and forth
between the two federations. This is not an easy task
(Granowetter 2003) but we believe that we can build
such a gateway as long as its scope is restricted to the
DCEE and similar federations. This is another ongoing
major project.

An additional i
is
Review of the huge amounts of data that can be
produced by simulations running on an SPP. A
distributed logging and query system is currently being
designed to attempt to address this requirement.

One of the most important areas that we nee
in
scenarios to the desired sizes, it becomes more and
more difficult to control the simulation and make sure
it behaves in a proper fashion. We need to look into
schemes that reduce the amount of operator control
that is required to run a simulation. This would have
an additional benefit for DCEE as well, since any
technique that reduces the number of personnel
involved will be of incredible utility.

g
detailed virtual environments, both for
experimentation and for many other uses of simulation.
We are integrating the use of SPP systems into the
DCEE, and we believe that it will provide an extremely
valuable asset in the DCEE environment.

The use of software interest manageme
p
flexibility in building a scalable system and providing
the building blocks to more detailed dataflow control
and management.

There are many ad
e
additional technical exploration to discover new ways
to apply the SPP assets to the problems of DCEE and
similar human-in-the-loop simulation systems.

ACKNOWLEDGEMENTS

 is based in part on research sp
th
number F30602-02-C-0213. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes, notwithstanding any
copyright notation thereon.

REFERE

chalk, T. (1997).

Parallel Processors, Center for Advanced Computing
Research Technical Report CACR-155.

runett, S. & Gottschalk, T. (1997). Scalab

Vehicles Using Multiple Scalable Parallel
Processors, Center for Advanced Computing
Research Technical Report CACR-156.

eranowicz, A., Torpey, M., Helfinstine, B

Joint Experimental Federation, Proceedings of the
2002 Interservice/Industry Training, Simulation a
Education Conference.

Experimentation, Submitted to the 2003
Interservice/Industry Training, Simulation and
Education Conference.

38

Calvin, J., Chiang, C., McGarry, S., Rak, S., Van

OW RTI

ahmann, J., Fujimoto, R., & Weatherly, R. (1997).

nter

eering, S. (1989). Host Extensions for IP

oup, RFC

Dorsch, M., Kostas, T., & Skowronski, V. (2002).

r 02F-

ranowetter, L. (2003). RTI Interoperability Issues -

elfinstine, B., Wilbert, D., Torpey, M., & Civinskas,

-032.

yett, M. & Wuerfel, R. (2003). Connectionless Mode

EE (1998). IEEE Standard for Distributed

ls, IEEE

wak, D. & Andrew, E. (2002). Technical Challenges

Hook, D., & Salisbury, M. (1997). Design,
Implementation, and Performance of the ST
Prototype (RTI-s), Proceedings of the Spring 1997
Simulation Interoperability Workshop, Paper 97S-
SIW-019.

D
The Department of Defense High Level
Architecture, Proceedings of the 1997 Wi
Simulation Conference.

D
Multicasting, IETF Network Working Gr
1112.

Reducing Bandwidth Requirements of Distributed
Simulations, Proceedings of the Fall 2002
Simulation Interoperability Workshop, Pape
SIW-118.

G
API Standards, Wire Standards, and RTI Bridges,
Proceedings of the Spring 2003 Simulation
Interoperability Workshop, Paper 03S-SIW-063.

H
W. (2001). Experiences with Data Distribution
Management in Large-Scale Federations,
Proceedings of the Fall 2001 Simulation
Interoperability Workshop, Paper 01F-SIW

H
and User Defined DDM in RTI-NG V6, Proceedings
of the Spring 2003 Simulation Interoperability
Workshop, Paper 03S-SIW-102.

IE
Interactive Simulation - Application Protoco
Std 1278.1A-1998.

K
for Joint Synthetic Battlespace (JSB), Proceedings of
the Fall 2002 Simulation Interoperability Workshop,
Paper 02F-SIW-075.

Lorenzo, M., Morse, K., Riggs, B., & Rizik, P. (2000).
Sensor Simulation Scalability Using Composable
Component Federates, Proceedings of the Fall 2000
Simulation Interoperability Workshop, Paper 00F-
SIW-090.

McGarry, S. & Torpey, M. (1999). Back to Basics:

Balancing Computation and Bandwidth, Proceedings
of the Fall 1999 Simulation Interoperability
Workshop, Paper 99F-SIW-188.

Morse, K. & Steinman, J. (1997). Data Distribution

Management in the HLA: Multidimensional Regions
and Physically Correct Filtering, Proceedings of the
Spring 1997 Simulation Interoperability Workshop,
Paper 97S-SIW-052.

MPI Forum (1995). MPI: A Message Passing

Interface Standard, Version 1.1.

Rak, S., Salisbury, M., MacDonald, R. (1997).

HLA/RTI Data Distribution Management in the
Synthetic Theater of War, Proceedings of the Fall
1997 Simulation Interoperability Workshop, Paper
97F-SIW-119.

Sterling, T., Becker, D., Savarese, D., Dorband, J.,

Ranawake, U., & Packer, C. (1995). Beowulf: A
Parallel Workstation for Scientific Computation,
Proceedings of the 24th International Conference on
Parallel Processing.

Williams, R. & Tran, J. (2003). Supporting

Distributed Simulation on Scalable Parallel
Processor Systems, Submitted to the 2003
Interservice/Industry Training, Simulation and
Education Conference.

39

Joint Experimentation on Scalable Parallel Processors

Robert F. Lucas, Dan M. Davis
Information Sciences Institute, University of Southern California

Marina del Rey, California
rflucas@isi.edu, ddavis@isi.edu

ABSTRACT

The JESPP project exemplifies the ready utility of High Performance computing for large-scale simulations. J9, the
Joint Experimentation Program at the US Joint Forces Command, is tasked with ensuring that the United States’
armed forces benefit from improvements in doctrine, interoperability, and integration. In order to simulate the future
battlespace, J9 must expand the capabilities of its JSAF code along several critical axes: continuous
experimentation, number of entities, behaviors complexity, terrain databases, dynamic infrastructure
representations, environmental models, and analytical capabilities. Increasing the size and complexity of JSAF
exercises in turn requires increasing the computing resources available to JFCOM. Our strategy exploits the
scalable parallel processors (SPPs) deployed by DoD’s High Performance Computing Modernization Program
(HPCMP). Synthetic forces have long run in parallel on inter-networked computers. SPPs are a natural extension
of this, providing a large number of processors, inter-connected with a high performance switch, and a collective
job management framework. To effectively use an SPP, we developed software routers that replace multicast
messaging with point-to-point transmission of interest-managed packets. This in turn required development of a
new simulation preparation utility to define the communication topology and initialize the exercise. We also
developed tools to monitor processor and network loading and loggers capable of absorbing all of the exercise data.
We will report on the results of J9’s December 2002 Prototype Event which simulated more than one million clutter
entities along with a few thousand operational entities using 50,000 interest states on a terrain database
encompassing the entire Pacific Rim. The exercise was controlled and “fought” from a J9 test bay in Suffolk, VA
and the clutter entities were executed on a remote SPP in Los Angeles, CA. We will also present results from the
Prototype Event in March 2003, as well as our long-term plans.

ABOUT THE AUTHORS

Robert F. Lucas is the Director of the Computational Sciences Division of the University of Southern California's
Information Sciences Institute (ISI). There he manages research in computer architecture, VLSI, compilers and
other software tools. He has been the principal investigator on the JESPP project since its inception in the Spring of
2002. Prior to joining ISI, he was the Head of the High Performance Computing Research Department for the
National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, the
Deputy Director of DARPA's Information Technology Office, and a member of the research staff of the Institute for
Defense Analysis's Center for Computing Sciences. From 1979 to 1984 he was a member of the Technical Staff of
the Hughes Aircraft Company. Dr. Lucas received his BS, MS, and PhD degrees in Electrical Engineering from
Stanford University in 1980, 1983, and 1988 respectively.

Dan M. Davis is the Director, JESPP Project, Information Sciences Institute (ISI), University of Southern
California, and has been active in large-scale distributed simulations for the DoD. While he was the Assistant
Director of the Center for Advanced Computing Research at the Caltech, he managed Synthetic Forces Express, a
multi-year simulation project. Prior to that, he was a Software Engineer on the All Source Analysis System project
at the Jet Propulsion Laboratory and worked on a classified project at Martin Marietta, Denver. An active duty
Marine Cryptologist, he currently holds a U.S.N.R. commission as a Commander, Cryptologic Specialty. He has
served as the Chairman of the Coalition of Academic Supercomputing Centers and the Coalition for Academic
Scientific Computation. He was part of the University of Hawai‘i team that won the Maui High Performance
Computing Center contract in May of 2001. He received a B.A. and a J.D., both from the University of Colorado in
Boulder.

40

mailto:rflucas@isi.edu
mailto:ddavis@isi.edu
cameras
Text Box
Appendix D

Introduction and Background
The United States has a vested interest in being able to
simulate more than one million vehicles, all with
sophisticated behaviors, operating on a global-scale,
variable resolution terrain database. This is driven by
the government’s needs to accommodate new computer
and communications technology (Cebrowski, 1998)
and simulate more complex human functions in
technically diverse situations (Sanne, 1999). The U.S.
Department of Defense (DoD) has begun a series of
experiments to model and simulate the complexities of
urban environments. In support of their mission,
analysts need to conduct interactive experiments with
entity-level simulations, using programs such as the
Semi-Automated Forces (SAF) family used by the DoD
(Ceranowicz, 2002). This needs to be done at a scale
and level of resolution adequate for modeling the
complexities of military operations in urban situations.
All of this mandates the government analysts’
requirement of simulations of at least 1,000,000
vehicles or entities on a global-scale terrain database
with high-resolution insets. Experimenters using large
numbers of Linux PCs distributed across a LAN found
that communications limited the analysts to tens of
thousands of vehicles, about two orders of magnitude
fewer vehicles than their needs. This paper addresses
the benefits of the successful application of
computational science and parallel computing on SPPs
to this issue. By extension, it illuminates the way for
those with similar simulation needs, but faced with
similar computational constraints, to make beneficial
use of the SPP assets of the High Performance
Modernization Program (HPCMP.)

While there are many approaches that are currently in
use, simulation and modeling at the entity level
(modeling each individual person and vehicle) manifest
some very attractive features, both for training and for
analysis. Many who would argue that entity level
simulations should be employed, maintain that these
would generate the most timely, most valid, and most
cost-effective analyses. Making these simulations so
that the DoD can involve humans, i.e. Human-in-the-
Loop (HITL), additionally augments the DoD’s ability
to assess true impacts on personnel and procedures.
(Ben-Ari, 1998) There are several new methods to
modeling human behavior (Hill, 2000). While these
require significant independent research (vanLent,
1998), they also require significant additional compute
power. Current capability does not allow the analyst to

conduct these experiments at the scale and level of
resolution necessary. These constraints have also been
found in other varieties of simulation.

In the present case, newfound emphasis on civilian,
“White,” and clutter entities has expanded the horizons
of entity-count by an order of magnitude. Take any
urban setting. The number of civilian vehicles will
easily outnumber the combat vehicles by a factor of ten,
and more likely, by a factor of 100. Trying to assess
the utility of sensors in discriminating the former from
the latter will be ill served by a simulation that is
limited to a few thousand vehicles total.

In order to make good use of the SPP assets currently
available to DoD experimenters, the JESPP project
applied approaches that others should find easily and
reliably implementable on other, similar, efforts. The
discussion of the implementation of the JESPP code
into the JSAF code base will not only represent a
record of where we have been, but show the path for
where we may go in the future.

The current work on Joint Experimentation on Scalable
Parallel Processor (JESPP) Linux clusters enabled
successful simulation of 1,000,000 entities. Software
implementations stressing efficient inter-node
communications were necessary to achieve the desired
scalability. One major advance was the design of two
different software routers to efficiently route
information to differing hierarchies of simulation
nodes. Both the “Tree” and the “Mesh” routers were
implemented and tested. Additionally, implementations
of both MPI and Socket-Programmed variants were
intended to make the application more universally
portable and more organizationally palatable. The
development of a visual and digital performance tool to
monitor the distributed computing assets was also a
goal that has been accomplished, leading to insights
gained by using the new tool. The design and selection
of competing program initiation tools for so large a
simulation platform was problematical and the use of
existing tools was considered less than optimal. The
analytical process for resolving initiation issues, as well
as the design and implementation of the resulting
initiation tool developed by the group, is both a
demonstrable result and the foundation of a
computation science paradigm for approaching such
problems. The design constraints faced are analyzed

 41

mailto:rflucas@isi.edu
mailto:ddavis@isi.edu
cameras
Text Box

Interice/Industry Training, Simulation, anducation Conference (I/ITSEC) 2003

along with a critical look at the relative success at
meeting those constraints.

The requirements are for a truly interactive simulation
that is scalable along the dimensions of complexity of
entity behavior, quantity of total simulated entities,
sophistication of environmental effects, resolution of
terrain, and dynamism of features. This is a challenge
that the authors assert may only be amenable to meta-
computing across widely dispersed and heterogeneous
parallel computer assets (Foster, 1997). Just achieving
scalability in all of these dimensions would be difficult.
Even more so, fielding a stable, dynamically
reconfigurable compute platform that may include large
parallel computers, Linux clusters, PCs on LANs,
legacy simulators, and other heterogeneous
configurations produces new obstacles to
implementation. Several unique and effective
Computational Science approaches are identified and
explained, along with the possible synergy with other
Computational Science areas.

The current work is based on the early work headed by
Paul Messina at Caltech (Messina, 1997). The
Synthetic Forces Express project (SF Express) began in
1996 to explore the utility of Scalable Parallel
Processors (SPPs) as a solution to the communications
bottlenecks then being experienced by one of the
conventional SAFs, ModSAF. The SF Express charter
was to demonstrate a scalable communications
architecture simulating 50K vehicles on multiple SPPs:
an order-of-magnitude increase over the size of an
earlier major simulation.

SPPs provided a much better alternative to networked
workstations for large-scale ModSAF runs. Most of the
processors on an SPP can be devoted to independent
executions of SAFSim, the basic ModSAF simulator
code. The reliable high-speed communications fabric
between processors on an SPP typically gives better
performance than standard switching technology
among networked workstations. A scalable
communications scheme was conceived, designed and
implemented in three main steps:

1. Individual data messages were associated with
specific interest class indices, and procedures
were developed for evaluating the total interest
state of an individual simulation processor.

2. WAN Communications: Within an individual

SPP, certain processors were designated as
message routers; the number of processors
used as routers could be selected for each run.
These processors received and stored interest
declarations from the simulator nodes and
moved simulation data packets according to
the interest declarations.

3. Inter-node Communications: Additional

interest-restricted data exchange procedures
were developed to support SF Express
execution across multiple SPPs. The primary
technical challenge in porting ModSAF to run
efficiently on SPPs lay in constructing a
suitable network of message-passing router
nodes/processors. SF Express used point-to-
point SPP MPI communications to replace the
UDP socket calls of standard ModSAF. The
network of routers managed SPP message
traffic, effecting reliable interest-restricted
communications among simulator nodes. This
strategy allowed considerable freedom in
constructing the router node network.

As the simulation problem size increased beyond the
capabilities of any single SPP, additional interest-
restricted communications procedures were needed to
enable Metacomputed ModSAF runs on multiple SPPs.
After a number of options were considered, an
implementation using dedicated Gateway processors to
manage inter-SPP communications was selected.

In March of 1998, the SF Express project performed a
simulation run, with more than 100,000 individually
simulated vehicles. The runs used several different
types of Scalable Parallel Processors (SPPs) at nine
separate sites spanning seven time zones. These sites
were linked by a variety of wide-area networks.
(Brunett, 1997)

This work depended on the existing DIS standard
utilized by the SAFs at that time. That standard was
replaced by the HLA/RTI standard that was purportedly
more scalable, but several years of use has shown the
clear limits of this simulation approach. This has not
prevented some experimenters from getting very good
results while simulating ~ 30,000 entities (Ceranowicz,
2002). These new standards and additional
requirements have driven the development of two new
router designs, Mesh Routers and Tree Routers.

JSAF

The Joint SemiAutomated Forces (JSAF) is used by the
US Joint Forces command in its experimentation
efforts. JSAF runs on a network of processors, which
communicate, via a local or wide area network.
Communication is implemented with High Level
Architecture (HLA) and a custom version of Runtime
Infrastructure (RTI) software version RTIS. A run is
implemented as a federation of simulators or clients.
Multiple clients in addition to JSAF are typically
included in a simulation.

 42

cameras
Text Box

Figure 1
Plan View display from a SAF

HLA and RTI use the publish/subscribe model for
communication between processors. Typically, these
processors are relatively powerful PCs using the Linux
operating system. A data item is associated with an
interest set. Each JSAF instance subscribes to ranges of
interest. A JSAF may be interested in, for example, a
geographic area or a range of radio frequencies. When
a data item is published the RTI must send it to all
interested clients.

A typical JSAF run simulates a few thousand entities
using a few workstations on a local area network
(LAN). A simple broadcast of all data to all nodes is
sufficient for this size simulation. The RTI on each
node discards data that is not of interest to each
receiving node. Broadcast is not sufficient when the
simulation is extended to tens of thousands of entities
and scores of workstations. UDP multicast was
implemented to replace the simple broadcast. Each
simulator receives only the data to which it has
subscribed, i.e. in which it has a stated interest.

The initial router implementation was a tree router.
Each router has multiple clients but only one parent.
There is one router that is the top of the tree. A second
topology has subsequently been implemented. We have
referred to it as a mesh router. Instead of a single router
at the top of a tree, there is a mesh of routers with all to
all communication. Each simulator is a client of one of
the mesh routers. Like the tree router, the primary task
of the mesh router is to maintain the interest state of all

Figure 2

3D Rendered display from a SAF

Operational imperatives drive experimental designs that
now required further expansions of JSAF capabilities.
As noted before, some of the requirements justifying
these extensions are the need for:

• More entities
• More complex entities
• Larger geographic area
• Multiple resolution terrain
• More complex environments

The most readily available source of one or more orders
of magnitude of increased compute power is the
capability presented by Scalable Parallel Processors. In
the JESPP project, JSAF was ported to run on multiple
Linux clusters, using hundreds of processors on each
cluster. Future runs will require thousands of
processors on multiple clusters. The primary difficulty
in using these resources is the scaling of internode
communication.

UDP multicast is limited to approximately three
thousand different channels. Based on geography alone,
worldwide simulations using JSAF require many more
interest states. UDP multicast has been replaced by
software routers.

Software routers were implemented on individual
nodes in a network that includes all of the client
simulators. Each simulator is connected to only one
router. Routers are connected to multiple clients and
multiple routers. Each connection is a two-way
connection. Two types of information are present in the
network. One is data along with interest description.
The other is the current interest state of each client. The
interest state changes as each node subscribes and
unsubscribes to specific interest sets, as is appropriate
depending on the simulation progress.

Each router must maintain the interest set of each node
to which it is connected, including other routers. A
router’s interest set is the union of all connected nodes.
A router then uses the interest state associated with data
it receives to determine how to forward the data. For a
given topology communication is minimized such that
each client node receives exactly the data in which it is
interested.

 43

Interserining, Simulation,nd Education Conference (I/ITSEC) 2003

clients so as to forward only data that is of interest to
each client and router. Further hybrid topologies are
possible with little or no code modification, such as a
mesh of meshes or a mesh of trees. Conceptually, the
mesh should provide better scalability.

Another use of routers is the implementation of
gateways providing an interface between different RTI
and communication implementations. Both TCP and
UDP are used for communication. Routers can use a
different protocol on different connections and perform
required data bundling, unbundling, etc. Different RTI
implementations, required by simulators developed by
different groups, can communicate via router-based
gateways.

The ultimate goal is for the capacity of a simulator
network to scale easily as the number of processors is
increased by several orders of magnitude.
Comprehensive testing and measurement is required to
document the performance of various topologies and
router implementations. This testing will identify
performance bottlenecks and suggest alternative
implementations to be tested. Multiple simulation
scenarios must be tested to construct guidelines for
assigning simulators, routers and topologies to multiple
SPPs.

Fault tolerance is another area being studied. JSAF
simulators are not affected by the loss of other
simulators. The use of routers creates a single point
whose failure eliminates multiple simulators. The use
of dynamic topology will be studied and implemented
to minimize the consequences of single node failures.
Several different concepts of providing redundancy or
instantaneous recovery are being considered and will be
implemented and evaluated.

Tree Routers
The first router implementation is a tree router.

Figure 3

Tree Router Architecture
Each simulator is connected to a router. All
communication to and from a simulator goes thru the
router. Routers have multiple child clients. All routers,
except the single router that is the root of the tree, have
one parent router. The root router has no parent. Each
simulator has exactly one parent router.

The function of a router is to receive data from clients
and parent, and forward (send) the data to any clients or
parent that have interest. Implementation requires that
simulators and routers communicate interest as well as
data. A simulator or router maintains the interest set of
its parent router. A router maintains the interest set of
all of its clients. When a simulator changes its
subscription, it sends a modified interest set to its
router. If this modifies the interest set of the router, the
router sends the modification to its other clients, and its
parent. Interest modifications propagate across the
router network until all nodes possess the interest set of
clients and parent.

When a simulator publishes data, the associated interest
set is intersected with the interest set of its router. If the
intersection is not empty, the published data is sent to
the router. When a router receives data from a client,
the interest set is intersected with the interest set of the
router's other clients. For each other client, if the
intersection is not empty, the data is sent to the client.
The same is performed for the router's parent. Given
the connectivity, or topology, of a tree, this set of
operations tends to minimize communication while
ensuring that all simulators receive all data of interest
to them in a timely manner.

Mesh Routers
Next we will describe the design of the new mesh
router

Figure 4

Mesh Router Architecture
The basic communications architecture expands on the
original SF Express work, as illustrated in Fig.(2). For
purposes of the present discussion, the relevant features
of this architecture are as follows:

1. Simulation processors (squares) are grouped
with each group associated with a specific
router node (“Primary Router”).

2. Message flow from a simulator to its
Primary Router had three main components:
a. Interest Subscriptions: Simulators

specify data type of (local) interest.
b. Data messages up: All messages

generated within the Simulator are sent
up for possible transmission to other
simulators.

 44

cameras
Text Box

Interservicestry Training, Simulation, and Education Conference (I/ITSEC) 2003

c. Data messages down: Messages from
elsewhere that match the relevant
interest declaration are sent from the
router to the simulator.

3. Two additional interconnected layers of
router nodes (Pop-Up and Pull-Down)
manage all of the interest-screened data
communications among the {Primary,
Simulators} sets.

4. Strict flow control among the layers

prevents communications deadlock, with an
additional “token protocol” used to eliminate
ineffective data reading attempts.

This architecture was central within the SF Express
large-scale simulations, with another class of router-
like processors (“Gateways”) used to manage interest-
screened communications among participating SPPs.

The present effort involves a number of significant
extensions from the original SF Express code:

1. Interest enumeration and interest state
declarations are now done using tools
within RTI-s.

2. Interest declarations are now “two way”,
involving both interest declarations and
publications.

3. Limitations on message size have been
eliminated, thus supporting occasional
very large “environmental” messages
within typical JSAF applications.

4. The entire code base has been
reformulated in a rather rigorous object-
oriented (C++) form.

5. Communications (along any link in the
figure) are now cleanly factored into a
number of objects and supported by
extensions now incorporated into the RTI-
s libraries.

6. The system fully supports mixed
communications protocols. Some of the
links in the Figure might represent MPI
communications while others could be
TCP.

7. The Gateway models from SF Express
have been reformulated (now essentially
clients rather than “special” routers).
Taken together with item 6, this greatly
facilitates linking of “meta-systems”
incorporating LANs and SPP assets.

Performance and resource usage monitoring

Abstraction mechanisms found in many distributed
programming systems enhance software reusability and
interoperability by hiding the physical location of
remote software processes. These abstraction
mechanisms, which include HLA's concept of federates
(Lightner, 1998) and CORBA's concept of components
(Keahey, 1997), greatly reduce the complexity of
accessing remote components. But, they come at the
cost of reduced visibility, which hinders discovery of
faults and impedes understanding of performance
characteristics of the distributed system. This section
describes a performance and resource usage monitoring
tool Monitoring Remote Imaging (MRI) that aids
developers in understanding the behavior of HLA
simulations by displaying the monitoring data within
the context of the execution of the distributed system.
Similar specialized tools could easily be envisioned,
designed and encoded for other simulations.

MRI displays monitoring data in the context of the
federation connection topology. Figure 5 shows the
screen dump of a MRI client's resource usage gauges
displayed in the context of a three-level tree topology.
The large oval pie chart at the top represents the root
tree router. The set of rectangles underneath the root
tree router represents sub-trees or router subgroups.
Each subgroup has a tree router (medium-sized pie
chart) connected to a set of federates (smaller pie
charts). The first subgroup on the left as only one
federate, and the other subgroups have eight federates.

Figure 5
Resource usage data of a JSAF federation

displayed within the context of a tree
connection topology.

In Figure 5 each CPU pie chart depicts the CPU usage
breakdown for one compute node:

• Red for user-level CPU usage
• Blue for system-level CPU usage,
• Green for idle.

Each compute node has two CPUs, but the node is
currently only running one process, so typically at most

 45

cameras
Text Box

Interservice/Instry Training, Simulation, and Education Conference (I/ITSEC) 2003

50% of the CPU is used for non-thread applications
like JSAF. At the snapshot when Figure 5 was taken
the router nodes within the tree show substantial
system-level CPU usage, which indicates the routers
are busy accessing kernel-level instructions to
send/receive data. The federates in Figure 5 are only
lightly loaded. Figure 6 shows alternative XY-plots for
displaying time series data. We are currently
evaluating the efficacy of the various displays.

Figure 6
Plotting router network I/O as a function of time

MRI provides a framework for monitoring the
performance and resource usage of federations at both
at the OS-level and at the application federate level.
Performance metric from both levels allows developers
to correlate resource usage with JSAF simulation
behavior. MRI display clients subscribe to monitoring
relay gateways, which periodically push out the
monitoring data. This monitoring data is represented in
XML for extensibility and flexibility. At the OS-level it
monitors the CPU load (user, system, idle), memory
usage (user, share, cached, free) and network traffic
(packets in/out, bytes in/out). Currently, for such OS-
level information MRI uses Ganglia, a cluster
monitoring tool from Berkeley's Millennium Cluster
Project. At the application level it currently monitors
JSAF's internal load, heartbeats, and various types of
entity counts (remote, local, ground vehicle). See
Figure 7.

Figure 7.
Custom gauge display for JSAF federates
and routers. Green/yellow/red status lights

indicate internal JSAF health status.
Yellow background

 MRI maintains a representation of the federation
connection topology in order to generate the gauge
displays. This does not violate HLA's information
hiding principles of reusability and interoperability,
since this topology information is still hidden from
JSAF federates, and the federates still have to
communicate with each other using HLA RTI's
communication infrastructure. The difference is that the
connection topology, which is always a vital part of the
HLA RTI, is now explicitly represented. Software
researchers have argued that explicit representation of
software architectures and topologies facilitates better
reasoning and understanding [Garlan and Shaw, 1993].
For example, in our case within the context of a
topology we can determine the relative importance of
node failures/bottlenecks. In Figure 7, node hn068 is
highlighted with a yellow background indicating that it
failed to emit monitoring data in a timely manner. The
failure of node hn068 would bring down the 361 local
entities that it is simulating. However, if instead the
router node hn084 had failed, then it would have
disconnected an entire subtree affecting 6040 entities.
If the head router hn207 had failed, then it would result
in a forest of disconnect subtrees. Current development
is directed at preventing such losses.

Initiation Issues and the “SimPrep Tool”

A major issue when using multiple and geographically
distributed SPPs is the effective coordination of
intitiation, operation, and termination. There is a large
body of research and development literature on various
approaches to this issue. (Foster, 1997) While using
these existing utilities and tool-kits may perhaps be the
smoothest path to an effective implementation, we
believe that this is one of the cases where a new tool
may be desirable. To illustrate the definition of a need
and the implementation of a new tool to serve that
need, we will discuss the JESPP “Simulation
Preparation” (SimPrep) tool. We do not suggest that it
has the broad functionality of a tool-kit like Globus, nor
is it suggested that other groups will need or want to
develop individual tool-kits in every circumstance.

The preliminary objective of the JESPP exercise is to
enable scalable multi-user simulations of synthetic
semi-automated battles across multiple SPPs.
Accompanying our mission are challenging problems
that we must address:

 46

cameras
Text Box

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

1. Overcoming geographical separation that is
inherently problematic in terms of latency,
and this experiment is particularly
interesting due to the requirements of
transporting a large amount of data between
the clusters.

2. Accommodating the variation of SPP
operational policy, e.g. security policy,
software and configuration, and network
constraints.

3. Implementing interactive computation in a
meta-computing environment. This is a new
challenge, and requires a new way of doing
business. We need to operate the SPPs in
interactive mode, as oppose to their
traditional batch-mode model.

Solving the challenges above was accomplished against
a backdrop of constraints, which included but were not
limited to:

1. Trying to juxtapose between ease of use and
flexibility. Our GUI application had to be
flexible as scripting language scripts. While
this challenge is not new to software
implementers, they were nonetheless
challenges.

2. Having to deal with continuous and large
dataset – this along with the need to conduct
precise metric. Traditional batch operation
on a single or multiple SPPs, while
collecting data concurrent to simulations,
postpone processing to the post simulation
stage.

3. Data collection had to behave as observers
and intrude into the collection process, thus
be observed.

The experiment process can be decomposed down to
four, disjointed processes; along with accompanying
software tools we’ve developed to facilitate each of the
stages:

Stage Applications

Abstraction stage
Designing the network and communication
topology, and do simulation preparation.

SimPrep and MARCI collector and MARCI GUI

Implementation stage
Deploying our software tools and applications to
the SPP compute nodes

MARCI application suite deployed and launched
applications

Execution stage
Conducting the actual experiment by game
players

JSAF applications, including tree router, JSAF
and ClutterSim.

Analysis stage
Studying and analyzing the exercise and
performance and effectiveness analysis

MRI and post processing and logger tools

Table 1

During the abstraction stage, we planed and designed
the network topology. We were primarily interested in
how each of the SPPs would be configured and
connected (internally) as well as the network
connections (externally) between them. To facilitate
this process, which was extremely tedious and error-
prone, we developed a software program called
SimPrep that read in as an extensible configuration
(network topology specification) file that utilized PERL
programming syntax.

During the implementation stage, we used the MARCI
applications to query the clusters for resources. Using
the resource information and the configuration file
defined (designed) in the abstraction stage, SimPrep
performed resource allocation and map concrete actual
compute nodes to abstract network layout.
There were two output files:

(1) the RID, a flattened connectivity file
(2) a mass launch file.

The RID file was in a LISP dialect and required to be
manually stitched into a larger RID file and is
understood by the JSAF, clutter, and router
applications. The mass launch file was a MARCI
specific instruction file on how to launch applications
for a specific SPP. Note that the rules for different
SPP are specified in the SimPrep configuration file.

Once the implementation stage was done, the exercise
began. At this point the MARCI application took over.
MARCI was responsible for starting and stopping
applications – and specifically MARCI along with
SimPrep served as the tool with which operators can
interface and managed applications on an SPP
interactively. This fact contrasted our way of using the
SPP with the traditional batch-processing model. The
communications between the MARCI GUI and the
MARCI collector is a socket-based communication on

 47

cameras
Text Box

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

top of the SSL Layer and it used public/private key for
message encryption.

Our option to use Globus is limited to resource
scheduling and resource discovery. We feel that at this
stage, as the experiment policy is still be shaped and
defined, Globus would be better used when our way of
doing business is solidified. We also feel that Globus
does not address the conduct of experiment, instead it
serves to facilitate the experiment once the rules of
engagement have been defined. For future experiments,
we feel the Globus will play an important role –
especially in the resource scheduling and discovery
stage.

Accomplishments and Future Directions

In December of 2002, the JESPP team ran a successful
prototype event using a partition of the USC IBM
Linux cluster, consisting of some 240 IBM 335 servers,
with 2 GHz Xeons, 1 GByte of RAM and both GigE
and Myrinet mesh communications. Both the scientists
at ISI in California and the operators at JFCOM in
Virginia jointly shared control. More than 1,000,000
civilian entities were successfully simulated. They
showed appropriate behavior and were stable, even
when scanned by the SLAMEM program, emulating
two GlobalHawk platforms. To ensure usability and
operational validity, about 1,100 warfighting entities
were also simulated and controlled in a manner
consistent with normal J9 experimentation. Stability
and appropriate response to control commands were
evident throughout. Several runs were conducted over
the course of a week and performance was
characterized.

Figure 7
Conceptual diagram of December Prototype Event.

Following the December event, it was decided to show
the utility of the DoD’s SPP assets by using two Linux
clusters, at two High Performance Computing
Modernization Program sites. Two centers agreed to
support this activity, the Aeronautical Systems Center
(ASC) in Ohio and the Maui High Performance
Computing Center (MHPCC) in Hawai’i. Maui had
the larger resource in this case, a several hundred node
IBM Linux cluster with Pentium III processors
running at 933 MHz and with 1 GByte RAM per
node. ASC’s cluster was smaller, but exhibited similar
processing parameters. With assistance from the
HPCMP PET program, the Defense Research and
Engineering Network (DREN) was used to
interconnect MHPCC, ASC, and the Joint Forces
Command in Virginia. Scalability and stability were
recorded. Initiation and system configuration issues
were studied and addressed.

The group contributing to the JESPP project has made
several noteworthy advances in high performance
computing. We note the two-router designs, both of
which merit further testing and use. Also, a fresh look
at performance monitoring on heterogeneous and
geographically dispersed SPPs has yielded a robust

 48

cameras
Text Box

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

and useful tool that both generates data and presents
status information in a visual manner that is useful for
both parallel processing experts and simulation
professionals. Some unique initiation problems have
resulted in a new approach to complex synchronization
issues not adequately addressed by either the SAF
family software or by more general meta-computing
tools.

Open issues for future work:

There is much to be done, of course, in terms of
instrumenting and analyzing the existing system,
contrasting performance with that from
communications options within the current RTI-s
baseline. The more interesting studies here will involve
comparisons of new qualitative features of the
underlying simulations. An example here is the
difference between “reduced capability” and “self-
aware” clutter (i.e., do clutter objects interact).

Many of the more interesting near-term development
paths can be characterized in terms of “special purpose
gateways” (now supportable in view of the
reformulated Gateway models). Examples include:

• Translation Gateways: Processors to
interpret and convert interest declarations
among simulations (federates) that do not
use a common interest-enumeration
protocol.

• Visualization Gateways: Processors (quite
possibly multi-processor collections) to
request, collect, process and simplify (e.g.,
iconify) visualization data within very large
simulations. (Current model does most of
this work within the visualization
workstations, giving rise to ample
opportunity for death by communications
overload.)

• Input Gateways: The “Collect, Preprocess,
Summarize” objectives of the Visualization
Gateway could be extended to other
processes interested in large subsets of the
simulation entities. An important example
here is SLAMEM.

That is:

This is not “merely” a translation of existing
(i.e., RTI-s) communications procedures. This
is the first of a number of steps to qualitatively
new capabilities that follow from:

1. The scalable communications
capabilities of the basic architecture.

2. The additional capabilities of the
“intelligent gateways” supportable
within this architecture.

Acknowledgements
This work was directed and funded by the Joint
Experimentation Group at the Joint Forces Command
and the authors wish to thank Gen. Dubik, Dan
Franken, and Anthony Cerri. We especially would
like to acknowledge the direction, support and counsel
of Rae Dehncke who has been the program manger
and guiding light for this project. The authors would
like to acknowledge the excellent technical support
provided by the members of the Computational
Sciences Division of the Information Sciences
Institute, Gene Wagenbreth and John Tran, as well as
the guidance and assistance from members of the
Scalable Systems Division there, the Dr.s Ke-Thia
Yao and Robert Neches. Also contributing greatly
were the scientists at OTCI, Dr. Tom Gottschalk,
Mike Boughton and Marvin Shannon. None of this
could be accomplished without the help of the JSAF
team Dr. Andy Ceranowicz, Mark Torpey, Bill
Hellfinstine and many others. This material is based
on research sponsored by the Air Force Research
Laboratory under agreement number F30602-02-C-
0213. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental
purposes, notwithstanding any copyright notation
thereon.

References

Ben-Ari, E. (1998). Mastering Soldiers: Conflict,

Emotions and the Enemy in an Israeli
Military Unit. New Directions in
Anthropology, V. 10. Oxford: Berghahn
Books.

Brunett, S., Davis, D., Gottschalk, T., and

Messina, P., (1998), Implementing
Distributed Synthetic Forces Simulations in
Metacomputing Environments, Seventh
Heterogeneous Computing Workshop,
Orlando, Florida

Cebrowski, A.K., & Garstka, J.J., (1998),

Network Centric Warfare: Its Origin and
Future, Naval Institute Proceedings, 124/1,
28-35.

 49

cameras
Text Box

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Ceranowicz, A., Torpey, M., Hellfinstine, W.,
Evans, J. & Hines, J., (2002), Reflections on
Building the Joint Experimental Federation,
Proceedings of the 2002 I/ITSEC Conference,
Orlando, Florida

Foster, I. & Kesselman C., (1997), Globus: A

Metacomputing Infrastructure Toolkit, Intl J.
Supercomputer Applications, 11(2): 115 –128

Garlan, D. and Shaw. M., (1993), An Introduction

to Software Architecture: Advances in
Software Engineering and Knowledge
Engineering, volume I. World Scientific
Publishing,.

Hill, R. W., Gratch, J., & Rosenbloom, P.S., (June,

2000). Flexible Group Behavior; Virtual
Commanders for Synthetic Battlespaces.
Proceedings of the Fourth International
Conference on Autonomous Agents,
Barcelona, Spain.

Keahey, K.& Gannon, D., (1997), and PARDIS: A

parallel approach to CORBA, Proceedings.
The Sixth IEEE International Symposium on
High Performance Distributed Computing, pp:
31-39, Portland, Oregon

Lightner, G.; Zeswitz, S.; & Graffagnini, J.,

(1998), Practical insights into the process of
extending a federation-a review of the High
Level Architecture Command and Control
Experiment, Proceedings, 2nd International
Workshop on Distributed Interactive
Simulation and Real-Time Applications, pp:
41-51, Montreal, Quebec

Messina, P. C., Brunett, S., Davis, D. M.,

Gottschalk, T. D., (1997, April) Distributed
Interactive Simulation for Synthetic Forces,
In J. Antonio, (Chair), Mapping and
Scheduling Systems, International Parallel
Processing Symposium, Geneva,
Switzerland.

Sanne, J. (1999). Creating Safety in Air Traffic

Control. Unpublished doctoral dissertation,
Institute of Tema Research, Linköping
University, S-581 83 Linköping, Sweden.

van Lent, M. & Laird, K., (1998). Learning by

Observation in a Complex Domain.
Proceedings of the Knowledge Acquisition
Workshop, Banff, Canada.

 50

cameras
Text Box

Supporting Distributed Simulation on Scalable Parallel Processor Systems

Richard Williams John J. Tran

BMH Associates, Inc. Information Sciences Institute, USC
Norfolk, VA Marina del Rey, CA

Williams@bmh.com jtran@isi.edu

ABSTRACT

The Distributed Continuous Experimentation Environment (DCEE) is a permanent simulation infrastructure being
set up by U.S. Joint Forces Command (JFCOM) to support Joint experimentation. DCEE will combine simulations
running on both local JFCOM networks and Scalable Parallel Processor (SPP) networks. JFCOM has been working
to develop tools to manage a large number of simulation computers with a minimal number of technical support
personnel. These tools allow an operator to start and stop various applications, monitor and graph machine
resources, generate simulation routing topologies, check network connectivity, and perform these functions in a
secure environment.

As DCEE planning continues, the requirement for centralized federation control becomes obvious. The challenge
of remotely coordinating the operation of hundreds or possibly thousands of simulation applications looms ever
larger. The fact that numerous machines may exist on remote networks further complicates this issue. As an
integral element of DCEE, centralized control will need to be expanded to manage and monitor SPP networks along
with existing systems.

This paper will address the complex challenges of controlling and monitoring an extensive simulation environment.
The paper will introduce the environment, describing the simulations and the SPP. The paper shall also discuss the
operational and technical advantages using a centralized set of tools. The paper will not only examine the
challenges encountered by attempting to run simulations on SPP networks, but also how these challenges are met.

ABOUT THE AUTHORS

Richard Williams is a Software Engineer with BMH Associates, Inc., supporting Joint Forces Command (JFCOM)
in Suffolk, Virginia. He received a B.S. in Computer Science from the University of Central Florida. He has
supported federation development for Attack Ops 00 (AO00), United Vision 01 (UV01), and Millennium Challenge
02 (MC02). He is currently supporting work for the Joint National Training Center (JNTC) and Distributed
Continuous Experimentation Environment (DCEE).

John J. Tran is a Computational Scientist at the Information Sciences Institute, University of Southern California.
He received both his BS and MS Degrees in Computer Science and Engineering from the University of Notre
Dame, where he focused on Object-oriented software engineering, large-scale software system design and
implementation, and high performance parallel and scientific computing. He has worked at the Stanford Linear
Accelerator Center (SLAC), Safetopia, Inc., and Intel Corporation. While at SLAC, he was part of the E&M
research team, whose research focuses on solving Maxwell's electromagnetic equations. While at Safetopia, he
worked on a high performance encryption file-system, multi-processing communication abstraction layer, and
distributed computing and dB interface. At Intel he was responsible for a software tool that performs noise analysis
using Intel's circuit design methodology. His current research centers on Linux cluster engineering, effective control
of parallel programs, and communications fabrics for large-scale computation.

51

cameras
Text Box
Appendix E

Interservice/Industry Training, Simulion, and Education Conference (I/ITSEC) 2003

Supporting Distributed Simulation on Scalable Parallel Processor Systems

Richard Williams John J. Tran
BMH Associates, Inc. Information Sciences Institute, USC

Norfolk, VA Marina del Rey, CA
williams@bmh.com jtran@isi.edu

INTRODUCTION

The Distributed Continuous Execution Environment
(DCEE) is a permanent infrastructure being set up by
the Joint Force Command (JFCOM) to support Joint
Experimentation. The DCEE will merge distributed
simulation systems running at JFCOM with
simulations running on Scalable Parallel Processor
(SPP) Networks. The reason for merging these
systems is to add flexibility in the allocation of
resources for use in very large scale simulations.

The government owns a number of SPP systems.
These systems represent a very large resource that
has yet to be regularly tapped into an interactive
computing environment. The SPP systems typically
have a number of strengths, such as high speed
networks and high quality machines, which make
them very desirable for the simulation community.
However, they are sufficiently different from the
typical simulation environment to present new and
difficult challenges.

The Synthetic Forces (SF) Express (Burnett 1997)
project recognized that increasing the size and
complexity of distributed simulation greatly increases
the importance of resource scheduling and allocation.
The problem of preparing distributed systems to
support simulation is simple to understand and
tedious to resolve. Very large simulations can easily
become impeded by details. Setup, configuration,
installation and execution can easily become difficult
tasks if a well designed system is not in place. This
paper describes the system we have created to
address these issues.

SPP Background and Motivations

The use of the Joint Semi-Automated Forces (JSAF)
application on SPPs has its roots in the SF Express
project (Burnett, et al, 1998) that achieved major
milestones in terms of escalating simulation entities
counts to an unprecedented level. At the same time
SF Express laid down a foundational proof-of-
concept that simulation experiments can be

conducted over a wide area network (WAN).
Operationally, the earlier SF Express experiments
spanned across multiple SPPs and were semi-
automated; in particular, the resources for each of the
experiments were dedicated (reserved) for each
scheduled simulation event.

A natural progression that builds on the earlier
successes of the SF Express project includes: (1)
further increasing the entity counts to match realistic
synthetic operational theaters and urban environment,
(2) further automate the process and management of
simulation events, and (3) further optimize and
enhance communication and dataflow by increasing
flexibility and network connectivity abstractions.

The modernization of SPP resources, such as the
increase in readily available bandwidth between SPP
sites (DREN 2003) and the proliferation of freely
available OpenSource operating system software
(Linux) running on commodity hardware (Intel-based
x86 architecture), have helped us increase high
performance computing capabilities. The Joint
Experimentation Scalable Parallel Processor (JESPP)
team set new entity record counts, exceeding the
million clutter entity count, with our experiments at
the USC cluster in December 2002.

As previously mentioned, the increase in resources
(especially those spanning multiple sites) necessitates
that the event organizers automate the setup and
simulation event as much as possible.

In the earlier implementations of JSAF applications,
the communication layer is based on a broadcast
model which for inter-SPP communications is not at
all possible. Thus, design and implementation
network topology abstraction serves as a means to
further optimize intra-SPP and inter-SPP
communication flow.

Participating Sites and Configuration

The SPP configuration for the Maui High
Performance Computing Center (MHPCC) and

52

mailto:Williams@bmh.com
mailto:JTran@isi.edu
cameras
Text Box

Interservice/Industry aining, Simulation, and Education Conference (I/ITSEC) 2003

Advanced Simulation Center (ASC) are both Linux
clusters with dual processor P3’s with one to two
gigabytes of memory and approximately ten
gigabytes of local scratch disk. Both operational
sites at the Information Sciences Institute (ISI) and
JFCOM run JSAF applications and our
controlling/monitoring tools on Linux workstations.
The connection between ASC and MHPCC is a high-
speed DREN network with sustaining bandwidth of
40 megabits/second (see Figure 1).

Figure 1 - SPP and operations centers

As noted, the multiple SPPs integrate to form a large
simulation system with each SPP being a self-
contained cluster of compute nodes. We strive to
keep the framework of operation within each
individual cluster consistent, despite varying policies
amongst clusters.

The SPP Federation

The federation we are trying to support for the SPP
testing is comprised of a number of federate
applications bound together by a communication
protocol called the Runtime Infrastructure (RTI)
(Kuhl 1999).

The Federates

Currently there are a small number of applications
being tested in the SPP configuration. These include
JSAF, Clutter, and Simulation of the Location and
Attack of Mobile Enemy Missiles (SLAMEM).
These simulations are used to produce entity-level
platforms which interact to produce a high quality
synthetic environment.

JSAF is a high-fidelity entity level simulation, that
can be used in a front-end/back-end configuration
where the front-end (or GUI) will be on a local
machine, while the back-end will be on the SPP.
Entities can be instantiated on the front-end, by either

an operator or from a file, but the actual simulation
will be on the back-end within the confines of the
SPP. This s done to limit the application-to-
application communications within the confines of
the SPP and to minimize Wide Area Network
(WAN) traffic. JSAF also can be used in a “Pocket”
configuration where both the instantiation and
simulation of entities will be within the confines of a
single local machine.

Clutter is a simulation used to add very large
amounts of low-fidelity civilian and military traffic to
a simulation to confuse sensors and create a more
realistic simulation. Clutter will publish a large
number of entities but only subscribe to a few
interactions.

SLAMEM is used to simulate various operational
sensors and provide a proper perception of reality.
SLAMEM uses ground truth entities to produce a
realistic view of what could be captured by sensors
within the simulation. This “view” is fed back into
the simulation in the form of target tracks.

The Runtime Infrastructure and Communication

The RTI is the common component which the
simulations use to communicate across the network.
The RTI uses subscription spaces to divide
simulation traffic so that federates only receive
objects and interactions in which they are interested.
For the DCEE, JFCOM is using RTI-s. By using
RTI-s, we have been able to modify the methods of
Data Distribution Management (DDM) (Helfinstine
2001) to allow for a much larger number of
subscription spaces. For example, in a test completed
in March, the city of Los Angeles alone was
subdivided into 8,000 subscription spaces and the
terrain was divided into over 100,000 spaces. In
contrast, the Millennium Challenge 2002 federation
was limited to approximately 1000 spaces
(Ceranowicz 2002). This change was possible only
by changing the communication protocol and using a
routing application to perform management controls.
All applications in the simulation learn about their
routing by reading the Runtime Initialization Data
(RID) file and communicating accordingly.

Building Software, Distribution and NFS

To maximize simulation time and minimize time
needed for setup and configuration, we have found
that having a single source for file distributions and
builds is best. Troubleshooting applications started
on an SPP is difficult. We do not have the option of
redirecting output of possibly thousands of

53

cameras
Text Box

applications across the WAN. Therefore, we
attempted to limit the number of variables as much as
possible. We have a single administrator build and
package the distribution and then distribute software
tunneled through a secure shell (SSH).

Currently, we are configured to use a Network File
System (NFS) for all applications and RTI files, but
terrain information is stored on each node locally,
because the network load of loading binaries is
minimal and only occurs at startup. In contrast, the
paging in of terrain can create a heavy load during
execution.

Application Execution

Executing applications for a distributed simulation in
an SPP environment is not simply a matter of
submitting a batch job and having everything work.
Prior to runtime there must be a process of gathering
resources, creating a topology, distributing the
Runtime Initialization Data, and preparing command
lines. To aid in performing these functions, we
developed a set of programs which consists of a
daemon to run on each node, a collector daemon to
run on the head node of each cluster, and a
controlling GUI to run at JFCOM. This system was
designed to work in conjunction with a system that
was already controlling local machines at JFCOM
(See Figure 2).

Figure 2 – GUI/Collector/Node Daemon Framework

Starting the Daemons

Generally speaking, each cluster has a job queue that
manages resources and schedules job requests [and
for the most part, SPP policy disallows interactive
login shells.] Our approach is to start the collector on
the head node and then submit the node daemons to
the job queue (see Figure 3).

54

Interserve/Industry Taining, Simulation, and Education Conference (I/ITSEC) 2003

Figure 3 - Comparison of work flow between the
traditional batch model and modified batch
model.

Once the job is running, using the front-end, we can
interactively start and stop applications. If a
topology or configuration requires modification, the
front-end can automate the workflow so the entire
group of cluster applications start and stop with a
single click.

New Way of Doing Business

Our methodology adheres to the cluster-job
submission policy and provides a flexible interactive
(and automated) interaction between the operator and
the SPPs. This new approach warrants a brief
discussion on this new way of doing business.
Figure 3 compares the traditional method of
interacting with clusters to the new approach. This
approach provides real-time control interface that can
often optimize resource utilization and provides
(retains) a semi-automated model for rapid start/stop
of applications.

Furthermore, this model is relatively fault tolerant.
Despite previous efforts to make SPPs more fault
tolerant (Squyres, 2000), the traditional model has
some drawbacks. For example, if a node or an
application dies, that node is lost. To restart
applications on that node, users must submit new job
submission requests. Using the interactive SPP
model, operators can restart dead applications in real
time, or even reconfigure the cluster topology,
without having to start over from scratch.

Gathering Resources

Discovering resources on multiple SPP systems
presented some problems. The first problem was
trying to interact with machines on a disparate
network. We opted to run a collector daemon on
the head node that could be contacted by both
applications on external networks and daemons that
run on the internal nodes. All commands to nodes on

a cluster would then be tunneled through the
collector. This collector maintains a list of all nodes,
and when requested by an approved external
application, it provides a status of the nodes.

A second challenge that the SPP environment
presented was the absence of a broadcast/multicast
capability. This meant that to recognize existing
machines on the cluster, the nodes would have to be
configured with the IP address of the collector prior
to execution. When the node daemons start up they
attempt to connect to the collector to pass it their
address information. Thereafter, the daemons send a
heartbeat signal once per minute, while the collector
gathers information on the node resources and waits
for tasking from the external controlling application.

Within the heartbeat is information regarding free
memory, CPU type, and load. This information is
used to give the resources a rating that represents the
expected simulation capabilities of the given node.

Abstracting Network Connectivity with Topology

Because broadcast messaging does not scale well as
resources increase, RTI communication with the SPP
is restricted to point-to-point (or a subset of
broadcast, instead of global broadcast). Formal
organization of the communication topology maps
applications to resources. Two connectivity maps are
currently being implemented and studied: (1) tree-
based topology (Hellfinstine, 2001), and (2) mesh-
based topology (Brunett, 1998). We have
successfully tested the tree-based topology in current
and past experiments, and we intend to pursue in a
near future the implementation of the mesh-based
topology.

Based on network load observation and metrics
collected during test trials, we designed each
topology instance. A topology is always conceived
before simulation and is represented by a suite of perl
scripts that generate RID files containing the
connectivity maps.

Creating a Mass Launch File

Following the topology generation process, we know
which application will be running on a given
resource. The next step is to create a file to store the
parameters specific to each application instance.
This file generation is an automated process which
produces a text output that can be read by the cluster
controlling application.

55

cameras
Text Box

Interseice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

Operators can then cut, copy, paste, and modify
entries in the mass launch files as necessary.
Multiple files can be generated to support multiple
launch configurations.

JSAF back-ends require a special procedure. Each
JSAF back-end is assigned a Persistent Object (PO)
database number, which enables control from a front-
end with the same database number. This number is
usually shared between multiple back-ends to allow
the entity load to be distributed among multiple
machines. Grouping PO databases with topology
groupings lessens traffic across the routing
applications and keeps objects and interactions to a
local set of machines.

Executing a Mass Launch

Once the Mass Launch File is completed, the system
should be ready for launch. The operator of the
controlling application then selects the tasks to be
performed, enters the exercise name, selects the
proper terrain and hits the launch button. The
collection of tasks is then sent to the corresponding
collector, which in turn delegates to the proper nodes.

To handle the large number of tasks potentially given
to the collector, a task queue was created for
prioritization, future scheduling of tasks, and for the
limiting of simultaneous connection threads to ten to
prevent overwhelming the system. During a test in
March, we were able to launch 240 applications on as
many nodes within 60 seconds.

After receiving the application execution task from
the collector, the node starts up the application and
sends out a heartbeat. The collector receives the
heartbeat which should indicate the application has
started. At this point, the controlling GUI’s operator
can update the status to ensure all applications started
up properly. As the applications start, they can be
observed joining the federation by executing RTI
print commands within the parser of any local
federates.

Problems with Running on a Cluster

Typically when running simulations in a Local Area
Network (LAN) environment, we run an application
in the GNU Project Debugger (GDB) and direct the
output to either a local monitor or a central
monitoring station. This allows us to obtain stack
traces and interact with any applications as necessary.
Because SPP machines have no displays and
redirecting a display across the WAN is not an option
we are unable to easily monitor output. This adds

difficulty to troubleshooting and difficulty in
resolving configuration issues. We do log output to a
file, but this is much less useful than an interactive
debugging session.

Killing Apps / Restarting the Simulation

Once set up, the federate and routing applications can
be started and stopped as necessary to support the
needs of the federation. Stopping the simulations is
accomplished in a similar manner to launching the
simulations. The operator selects the tasks that were
launched and simply presses a button to bring down
the selected applications. As in the launch, tasking
from the collector to the nodes is controlled to
prevent overloading the systems. Operators can also
select individual nodes to restart if desired. This
option might be necessary if a specific application or
group of applications become unresponsive.

SPP Resource Monitoring

The monitoring of SPP resources was recognized
early on to be a necessity in any simulation support
system. Specifically, we wanted to graph memory
usage, load average, and network statistics on
individual nodes. We needed to monitor these
parameters in real time to analyze how changing
parameters, code, topologies, and the many other
variables associated with the simulation were
affecting the individual machines.

We also wanted to ensure that any monitoring design
did not create an unnecessary load. We decided to
put monitoring capabilities into the same node
daemon, collector, and application GUI framework
that had been designed for the application execution
system. This allowed the operator to query the
resources for information by going through the
collector

Analyzing Memory/CPU Utilization

We decided to embed the load average and memory
usage information in the heartbeat from the node
daemon to the collector. For these parameters, the
once a minute sampling rate seemed sufficient and
gave a good snapshot of the status of the nodes. We
found that graphing the information in relation to
time provided the most useful information by
providing insight into trends.

We also wanted to ensure that any additional factors
we wanted to graph or analyze could be added
without much work. Efforts were made to generalize

56

cameras
Text Box

Interservice/Indtry Training, Simulation, and Education Conference (I/ITSEC) 2003

the graphing and data gathering capabilities so that
additions could be made easily.

Analyzing Network Statistics

Network information was not embedded in the
heartbeat because the once-a-minute reporting did
not always suit our needs. Quite often, a five-second
polling interval could catch spiking data that a sixty-
second interval would not.

To accomplish this, we had the application query the
collector with a list of nodes to be analyzed. The
collector then queried the node daemons for network
information which could then be used to create or
update an existing graph. Using this method the
operator can select any update rate he or she desires.
Since this process generates much heavier load than
obtaining memory or load information, we would
typically limit the nodes we would graph to a small
set.

Expected Problems and Bottlenecks

Each simulation we support has unique limitations.
In benchmark testing, we observed that a JSAF using
RTIs consumed about 20 KB of memory per entity
subscribed or published. This meant that a JSAF
application on a machine with 1 GB of RAM could
be aware of about 40,000 entities before memory
swapping occurred. This number is not definitive
due to a variety of other factors, including terrain
paged in and other applications loaded.

Clutter only subscribes to some of the interactions
and does not subscribe to remote objects at all. This
means that memory becomes less of an issue and that
the CPU becomes the primary limiting factor on
number of entities the application can simulate.
Figures 5 and 6 show CPU and memory information
graphed from a machine on a mega-sim cluster node
running a clutter application.

Figure 5 - Clutter CPU Load (Y axis) over time (X
axis)

Figure 6 - Clutter Free Memory (Y axis) over time
(X axis)

Routing applications on the head nodes of the
clusters were the first location where network
bottlenecks were expected to appear. When an
application, or group of applications, over-subscribes
to data that is then requested to go across the WAN,
available network bandwidth can easily be exceeded.
Figure 7 shows the network statistics on the head
router on mega-sim. For the test, a JSAF at a remote
site subscribed and unsubscribed to clutter on a
cluster node. Graphs such as this can identify
problems in DDM, machines, and networks.

Figure 7 - Head router network statistics (Y axis)
over time (X axis)

Although subscription spaces may be divided into
very small areas, individual entities or groups of
entities can still have subscription regions that
overlap a large number of spaces, creating a large
amount of traffic. For example, during a test in May
2003, we simulated approximately 100,000 clutter
vehicles in the Los Angeles area on the Maui SPP.
We then flew an F-16 (simulated at JFCOM) into the
area. The F-16 had a subscription radius of
approximately 30 nautical miles and subscribed to a
large portion of the 8000 spaces in the area. This
quickly overwhelmed both the local JSAF and
pushed the network limits as well. While this type of
effect was expected in this test, it demonstrated that a
simulation operator can easily perform a seemingly
insignificant action which will have catastrophic
consequences on the federation. By adding

57

cameras
Text Box

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

monitoring capabilities to the routers we will better
be able to catch these issues before they become a
problem and help developers create better
mechanisms for interest management.

Running a simulation with a very large number of
entities and using dynamic subscription regions
increases the risks. The potential to “blow out” any
element of the federation exists and requires the
support team to recognize and try to predict potential
problems. Monitoring must inform the development
team how changes in software, topologies, or
network infrastructure, all machines throughout the
simulation. Through diligent monitoring, methods to
ensure the simulation delivers the most information
possible while operating reliably can be discovered.

Security

To ensure that only individuals with proper authority
are able to execute applications on the cluster from
remote sites, we have examined two possible
solutions.

SSL

Currently, all commands to the collector from the
GUI application are executed through a Remote
Method Invocation (RMI) connection via a Secure
Socket Layer (SSL) (JSSE 2003). The collector is
configured so that only clients with a private key
(also known as the keystore) and the proper
passphrase can connect. The keystore and
passphrase are verified by a public key or truststore
kept on each of the collectors. The use of SSL
serves two functions: data encryption and
authentication. SSL uses public key cryptography to
provide authentication, while secret key
cryptography and digital signatures ensure privacy
and data integrity. The private/public key pair is
generated prior to file distribution. The public key is
then placed in the distribution, allowing the collector
to authenticate connecting clients. The distribution
of the private key must be controlled and only placed
on machines which are designated to control the
cluster.

Kerberos

The High Performance Computing (HPC) officer
requires that SPP users have a Kerberos (Tung 1999)
access card and that applications running on their
clusters adhere to their security policy. We are
currently studying options to ensure the experiments
follow the strict HPC security guidelines, including:

1. Use of Kerberos tunnels between SPPs and
operational centers which would
authenticate and encrypt all
communications.

2. Re-design the communication layer with the

explicit use of the Kerberos library for
point-to-point communications.

Future efforts include experiments to analyze the
performance impact and validate both approaches.

Conclusion

We have attempted to design a system that gives a
single administrator the capability to set up, execute,
and monitor multiple simulation applications, on
possibly thousands of machines, on disparate
networks. We have also stressed simplicity and
minimized the number of steps required to run the
simulation. We believe that we have succeeded to a
great degree.

The application execution system alone should save
countless hours by simplifying a process that had
been extremely obtrusive. By getting away from the
traditional SPP batch model we have added the
ability to bring applications up and down at will.
Further, the monitoring capabilities we have added to
the system should allow us to predict and recognize
problems that may degrade the simulation. All the
tools we have created are not simply nice to have,
they are a necessity if we wish to run interactive
simulations in an SPP environment.

Difficulties will continue to arise when dealing with
systems that we do not own. These difficulties that
must be addressed include: adhering to other
organization’s security rules, resource scheduling
restrictions, and system management procedures. In
addition, future simulation efforts, though dealing
with systems that are complex in nature, should be
simple as possible to use.

ACKNOWLEDGEMENTS

The authors would like to thank Andy Ceranowicz,
Bill Helfinstine, Steve Bixler, Rae Dehncke, Jason
Boyer, Phillip Amburn, Ken Hornstein, Nicholas
Pellegrini, Gene Wagenbreth, Ke-Thia Yao, Dan M.
Davis, Robert F. Lucas, George Thompson, and all
the various site support personnel for their help in
various aspects of this project. This material is based
in part on research sponsored by the Air Force
Research Laboratory under agreement number
F30602-02-C-0213. The U.S. Government is

58

cameras
Text Box

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

authorized to reproduce and distribute reprints for
Governmental purposes, notwithstanding any
copyright notation thereon.

REFERENCES

Burnett, S., Davis, D., Gottschalk, T., Messina, P.,
Kesselman, C., (1997), Implementing Distributed
Synthetic Forces Simulations in Metacomputing
Environments. Retrieved April 15, 2003 from
ftp://ftp.globus.org/pub/globus/papers/sf-
express.pdf

Burnett, S. and Gottschalk, T. (1998). “A Large-

Scale metacomputing frame for the ModSAF real-
time simulation.” Parallel Computing. Elsevier,
Amsterdam.

Ceranowicz, A., Torpey, M., Helfinstine, B., Evans, J.,

Hines, J., (2002), Reflections on Building the Joint
Experimental Federation.

DREN webpage.

http://www.hpcmo.hpc.mil/Htdocs/DREN/dren-
def.html

Helfinstine, B., Wilbert, D., Torpey, M., Civinskas,

W, (2001), Experiences with Data Distribution
Management in Large-Scale Federations,
Simulation Interoperability Workshop, 01F-SIW-
032, Sept 2001.

JSSE Reference Guide

http://java.sun.com/j2se/1.4.1/docs/guide/security/j
sse/JSSERefGuide.html

Kuhl, F., Weatherly, R., and Dahmann, J., (1999),

Creating Computer Simulation Systems: an
Introduction to the High Level Architecture.
Prentice Hall.

Squyres, J.M., Barrett, B., Lumsdaine, A. The System

Services Interface (SSI) to LAM/MPI. Technical
Report TR575, Indiana University, Computer
Science Department.

Tung, Brian (1999). Kerberos: A Network

Authentication System. Addison Wesley.

59

ftp://ftp.globus.org/pub/globus/papers/sf-express.pdf
ftp://ftp.globus.org/pub/globus/papers/sf-express.pdf
http://www.hpcmo.hpc.mil/Htdocs/DREN/dren-def.html
http://www.hpcmo.hpc.mil/Htdocs/DREN/dren-def.html
http://java.sun.com/j2se/1.4.1/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.4.1/docs/guide/security/jsse/JSSERefGuide.html
cameras
Text Box

21st Century Simulation:
Exploiting High Performance Computing and Data Analysis

Dan M. Davis Garth D. Baer Thomas D. Gottschalk

Information Sciences Institute, USC Oracle Corporation California Institute of Technology
Marina del Rey, California Culver City, California Pasadena, California

ddavis@isi.edu garth.baer@oracle.com tdg@cacr.caltech.edu

ABSTRACT

This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded
paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to
overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel
computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in
computing power. This has been characterized as a ten-year lead over the use of single-processor computers.
Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power.
JFCOM’s JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The
challenges facing the defense analyst today have grown to include the need to consider operations among non-
combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-
combatants, and to understand non-linear, asymmetric warfare. These requirements stretch both current
computational techniques and data analysis methodologies. In this paper, documented examples and potential
solutions will be advanced. The authors discuss the paths to successful implementation based on their experience.
Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch,
database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses.
The modeling and simulation community has significant potential to provide more opportunities for training and
analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more
realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights,
for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased
understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses.
The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the
beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success.

ABOUT THE AUTHORS

Dan M. Davis is the Director, JESPP Project, Information Sciences Institute, University of Southern California, and
has been active for more than a decade in large-scale distributed simulations for the DoD. While he was the
Assistant Director, Center for Advanced Computing Research, California Institute of Technology, he managed
Synthetic Forces Express. He has also served as a Director at the Maui High Performance Computing Center. He
served in the USMC on active duty and is a Commander, Cryptologic Specialty, U.S.N.R.-Ret. He has been the
Chairman of the Coalition of Academic Supercomputing Centers and received a B.A. and a J.D., University of
Colorado, Boulder.

Garth D. Baer is a technical analyst who is studying the impact of policy on technology as well as the changes
technology makes on policy formulation and implementation. A Principle Support Engineer at Oracle Software
Corporation, he develops new web-based applications and troubleshoots production database issues. Earlier, he was
a Mission Control Engineer for Milstar Communications Satellites at Lockheed-Martin. He recently was invited to
join a multi-university group developing a vision statement for DoD policy on M&S. He received Bachelors in
Physics, Univ. of Colorado, Boulder and a Masters in Technology Management, Colorado Technical Univ.

Thomas D. Gottschalk is a Lecturer in Physics at the California Institute of Technology and a Member of the
Professional Staff, Center for Advanced Computing Research there at Caltech. For the last decade, much of his
research has been on the use of parallel computers to simulate various physical phenomena. His instructional duties
include his upper division course on Statistics for Caltech Physics Graduate students. He received a B.S. in Physics
from Michigan State University and a Ph.D. in Theoretical Physics from the University of Wisconsin.

60

cameras
Text Box
Appendix F

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

21st Century Simulation:

Exploiting High Performance Computing and Data Analysis

Dan M. Davis Garth D. Baer Thomas D. Gottschalk
Information Sciences Institute, USC Oracle Corporation California Institute of Technology

Marina del Rey, California Culver City, California Pasadena, California
ddavis@isi.edu garth.baer@oracle.com tdg@cacr.caltech.edu

BACKGROUND AND INTRODUCTION

This paper will discuss the need to augment
simulations, offer enhancements, and show how these
enhancements can be implemented, using the authors’
JFCOM/Urban Resolve experience as examples.

The Need to Improve Simulations

For thousands of years, leaders have used various
representational methods to prepare for the defense of
their societies. These have ranged from the venerable
game of chess to complex electronic emulations of
combat. When threatened, there is an understandable
pressure to use what has proven reliable in the past and
there is a countervailing desire to make use of effective
new techniques. Two of the promising technologies
available to defense leaders today are high
performance parallel computing and advanced data
analysis.

Contemporary analysts are faced with increasing
pressure to provide more opportunities to both analyze
the present dangers and train for the future operations.
The vacant battlefield of yesterday is being replaced by
the crowded urban warfare environment of today,
populated with non-combatants for whom there is an
increased sense of responsibility. Weapons of
increased destructive power and refined targeting
capabilities make it both possible and necessary to
honor this sensitivity. Planners and trainers must have
access to simulations of unfettered scale that are built
on increasingly sophisticated environments, with better
emulations of foes and more realistic civilian
populations. The coordination and synergy of these
simulation and analytical capabilities are necessary to
deliver insights for the analyst and trainee.

There are well-recognized limitations that restrict the
full exploitation of what the DoD calls Forces
Modeling and Simulation (FMS), (HPCMP, 2004).
This paper focuses on two:
• The inherent constraints of current

computer-use paradigms

• The restrictions found in traditional
techniques of data analysis

In order to meet the two-fold test of reliability and
efficacy, new capabilities designed to overcome these
limitations must provide sufficient improved utility to
warrant the risk and effort expended in adopting them.

The nature of the adoption process is critical. The
correct approach will lead to early productivity, low
risk and continued utility. A well-thought-out plan,
following the proven paths of analogous analytical
disciplines, will reduce cost and accelerate benefits.
Disciplines of interest include academic research fields
investigating physical and biological phenomena. After
several decades of using high performance parallel
computing and advanced data analysis techniques in
these areas, the pitfalls to avoid and the productive
paths to follow have been clearly established.

Limitations Imposed on Modeling and Simulation
by Current Computing Paradigms

The FMS community has become accustomed to
waiting for the additional power represented by the
doubling of circuit devices on a computer chip every
18 months. Being able to move from the floor of the
gym at the Naval War College (see Figure 1) onto the
vastly larger canvas of a digital computer terrain
database was a momentous leap.

Figure 1. 1930’s - U.S. Naval War College personnel
conducting simulated campaigns on a gym-sized floor.

The more distant horizons, such as global-scale, high-
resolution terrain environments, seem out of reach. The
FMS community has an opportunity to overcome this
unnecessarily limited vision.

61

cameras
Text Box

Intervice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

Terrain databases are now available in multiple
resolutions and for nearly every area of the globe.
Using workstation and PC technology hosted on LAN
configurations, truly incredible advances have been
made in our ability to provide a realistic and
geographically appropriate environment for conducting
large operations (Ceranowicz, 2002). Even these
capabilities, however, are often limited in two
important dimensions: resolution and total area. As the
areas of interest broaden for both the analysts and
policy makers, the need to have access to
representations of any terrain becomes more
imperative.

An example of an important feature of current
computer practice to which the community has become
accustomed is the constraint imposed by the limits of
individual processing speed. The desire to represent
sophisticated behaviors requires ever-increasing
processor power, and this is magnified by the desire to
run multiple instances of non-deterministic simulations
to evaluate the range of outcomes (Horne, 1999). The
need to represent tens of thousands of entities that are
“aware” of each other also impacts performance. In
one class of this “awareness,” entities are within a
range where they can see each other. A much more
extreme case is now of concern: the high altitude
intelligence platform with sensors that can “see”
virtually every entity in an entire theater of war.
Current programming, as exemplified in the
SemiAutomated Forces (SAF) programs, handles this
location and awareness issue by running an inter-
visibility calculation every few milliseconds.
Obviously, with a huge number of entities, this
represents a huge compute burden. Current practice
shows this type of situation can be simulated on a
typical single processor of present-day (2004)
capacities at only a few hundred vehicles. In
Millennium Challenge 02, a network of similar PCs on
a LAN, experience seems to indicate that the total
vehicle count is limited to a few tens of thousands - not
enough for military vehicles (Ceranowicz, Dehncke
&Cerri, 2002).

Moreover, modern battlefields are rarely located on
remote plains, and the battles in urban areas are not
fought with the destructive abandon of World War II,
as in Stalingrad. Instead, the modern analyst is looking
for ways to achieve national goals while operating in
populated urban areas with no loss of non-combatant
life, minimal destruction of civil infrastructure, and
reduced losses to friendly forces. For that reason, the
simulations-enabled analyst is faced with the challenge
of trying to understand how modern intelligence

platforms can view a city full of vehicles and other
entities. Clearly, something on the order of a million
civilian entities approaches realism; a few thousand
does not.

Limitations Imposed by Traditional Data Analysis

Similar constraints are observed when using only the
traditional methods of data analysis. Historically, the
validation of the insights gained from simulation are
not infrequently lost by virtue of the imposition of
accepted views.

Analytical approaches have not changed much over the
intervening decades. With all of our increased
sophistication in electronically produced simulations,
one very common method of strategic deliberation
remains the observation, logging and analysis of
simulation outcomes by subject matter experts (SMEs).
The authors maintain that adopting and implementing
analytical techniques used in the behavioral sciences
and operations research should enable these experts to
be even more valuable.

In trying to understand the output of simulations
similar to Project Albert, one is faced with a virtual
flood of information (Brandstein, 1998). This flood
presents problems in collection, collation, and
consideration. Many programs are driven by the
application of a series of pre-established probability
tables for many of their activities, e.g. accuracy of fire,
damage occasioned by weapons strike, mechanical
failures. Against these tables, a random number is
applied and the resultant action is implemented. This
results in a non-deterministic simulation. Analysis can
be much enhanced, if the simulation is run multiple
times, with the resultant outcomes appropriately
analyzed.

0.02
0.04

0.06
0.08

Pk
1
2
3
4
5
6

Fire Range

0.25

0.50

0.75

1.00

Red Fitness

Blue Maneuvers

0.02
0.04

0.06
0.08

Pk
1

2
3
4
5
6

Fire Range

0.25

0.50

0.75

1.00

Red Fitness

Blue plows through

Figure 2 . Three-dimensional representations of the
effects (fitness) of two parameters (fire range and

possibility of kills) with maneuver (Brandstein, 1998).

As the analysts consider the outcomes, they are faced
with assessing the impact of several parameters

62

cameras
Text Box

simultaneously. These multi-dimensional solution
spaces become difficult to visualize, as n exceeds 3.
(see Figure 2) Tabular representations of “killer-victim
scoreboards” are not uncommonly seen as insufficient
to produce all of the insights that are necessary.

In addition to the data that is collected from running
analytical simulations, there is also a huge amount of
data that is or could be collected from simulations run
for training purposes. This issue of the appropriate and
improved use of the data collected for purposes other
than its analytical content is treated in more detail later.

Future Needs of Analysts

It could be argued from these few examples that the
analysts of today are faced with problems for which
current technology implementations are not adequate.
While analysts have done heroic duty in developing
work-arounds for these limitations, the degree to which
they are missing important insights remains
unquantified, and disturbing. By analogy, the physical
sciences found themselves in a very similar position
early in the days of simulations on computers and the
subsequent analysis of physical phenomena. Their
experience suggests that the current practice of
reducing resolution and geographical scope of FMS
scenarios is leading in the wrong direction. It may be
robbing the analysts of insights that could be extracted
from more sophisticated and detailed models running
on larger terrain databases.

The FMS community is also increasingly experiencing
pressure to simulate some of the more complex forms
of human behavior. One area of great interest in
military science is the actual role of the individual
soldier and commander (Ben-Ari, 1998). More
computing power will be required to be able to deliver
analytical and training platforms that can model
emotion in a useful way (Garlan, 1993).

While FMS analysts now have access to much more
computing power than they did a few decades ago,
there is evidence that significant additional capacity
could be implemented, with a high degree of
confidence in its expanded utility, reliability, and
stability. It is neither necessary nor desirable to move
into the future using untested technology nor is it wise
to duplicate already available, useful programs. Others
have broken the ground that the FMS community can
now till.

HIGH PERFORMANCE COMPUTING

Originally, computer scientists considered that the only
way to speed up the process was to accelerate the CPU.
At a certain point, however, it seemed obvious that the
technology would not be able to keep improving
processors to do calculations faster by increasing clock
speed. They would similarly not be able to continue to
make each clock cycle more effective by adding
functions to the processor (Moore, 1965).

That led to theorizing about parallel computation and
harnessing more than one computer to work on the
same task. A generalized theory of parallel processing
effectiveness was advanced by Amdahl, in which he
carefully described the speed-up that one would expect
(Amdahl, 1967). Starting with work at Caltech on the
Intel Delta, with 512 64-bit processors, increasing
numbers of simulations have been effectively
parallelized for the big machines, with high-speed
inter-node communications fabrics. As this size was
orders of magnitude greater than the early limits
theorized, this class was often referred to a Massive
Parallel Processors (MPPs).

Table 1. World’s fastest supercomputers.

Rank Site
Country/Year

Computer / Processors
Manufacturer

Rmax
Rpeak

1 Earth Simulator
Japan/2002

Earth-Simulator / 5120
NEC

35860
40960

2 Los Alamos
National Lab
U.S./2002

ASCI Q - AlphaServer, 1.25
GHz / 8192
HP

13880
20480

3 Virginia Tech
U.S./2003

1100 Dual 2.0 GHz G5/
Infiniband/GigE/ 2200
Self-made

10280
17600

4 NCSA
U.S./2003

P4 Xeon 3.06 GHz, Myrinet /
2500
Dell

9819
15300

5 Pacific NW
National Lab
U.S./2003

Integrity Itanium2 1.5 GHz,
Quadrics / 1936
HP

8633
11616

6 Los Alamos
National Lab
U.S./2003

Opteron 2 GHz,
Myrinet / 2816
Linux Networx

8051
11264

7 Lr. Livermore
National Lab
U.S./2002

MCR Linux Cluster Xeon
2.4GHz, Quadrics / 2304
Linux Networx/Quadrics

7634
11060

8 Lr. Livermore
National Lab
U.S./2000

ASCI White, SP Power3 375
MHz / 8192
IBM

7304
12288

9 NERSC/LBNL
U.S./2002

SP Power3 375 MHz
16 way/ 6656
IBM

7304
9984

10 Lr. Livermore
National Lab
U.S./2003

xSeries Cluster, Xeon
2.4GHz, Quadrics/ 1920
IBM/Quadrics

6586
9216

The Top 500 Supercomputers list presents rankings in
order of performance using LINPAC, a common
benchmark. The top ten of the list for 2003 is
reproduced above in Table 1. The number of

63

Interservice/Indury Training, Simulatio and Education Conference (I/ITSEC) 2004

processors follows the name (van der Steen, 2003).
Note that the least amongst these has 1,920 processors
and that the biggest, but not most powerful, has 8,192.
This list covers only the supercomputers that are
engaged in work that can be publicly acknowledged.

Linux Clusters: The Beowulf Concept

This last cost-based definition brings us to the next
important concept: commodity clusters, or Beowulfs.
Dr. Thomas Sterling propounded and popularized
large-scale parallel computing through the use of cheap
commodity components: CPUs, power supplies, RAM,
internode communications, operating systems and
software (Sterling, 1999). By taking best advantage of
the cost benefits of mass production, he collected and
organized mass numbers of commodity processors.
These are usually Intel architecture PCs, with
communications between them using gangs of low-cost
Ethernet switches (or the more expensive but more
powerful cluster communications switches).

Figure 3 The IBM Linux cluster at the Maui High
Performance Computing Center.

Beowulfs typically use the largely free operating
systems like Linux and the GNU series of compilers
(see Figure 3). For internode communications
programming, there are a number of languages
following the Message Passing Interface (MPI)
standard. These may be obtained without paying the
expensive license fees that are typical with some of the
proprietary supercomputers.

The Beowulf technology is not the most effective one
for computing that requires exceptionally high-speed
serial computation, exceptional floating-point power,
or exceptionally low latencies for their internode
communications. Clusters are fortunately very useful

for most programs. Unlike the Cray series that were
very high-speed vector machines and required liquid
cooling, the Beowulf series are now universally air
cooled, requiring only sufficient machine room cooling
to remove the heat from the amassed processors. The
avoidance of the efficient, but expensive, CPU/liquid-
coolant interface is an incredible cost savings. A
typical price for a significantly sized cluster is on the
order of a few thousand dollars per node.

Grid Computing

If processors can be amalgamated to produce more
power locally, then there could be even more power
made available if remote computers could be similarly
connected to provide additional processors. The
previously mentioned concept of scalability clearly
comes into play and one new concept must be
considered. Most of the clusters and supercomputers
discussed so far have been homogeneous, i.e. all of the
processors are the same. If grid computing entails
using clusters and processors from different sites, then
the likelihood of homogeneity falls rapidly.
Fortunately, Beowulfs have been remarkably tolerant
of heterogeneity and data will be later adduced to show
the capabilities of grids made up of the Beowulf Linux
clusters and the proprietary supercomputers.

Grid computing usually conveys the concept of using a
Wide Area Network (WAN), frequently the Internet
itself, to connect remotely located SPPs, both
supercomputers and Linux clusters. The landmark
work on this innovation was done by Ian Foster and
Carl Kesselman (Foster, 1997). In order for all of
these diverse and dispersed assets to be useful, there
must be methods of coordinating, initiating, and
controlling them. The tool developed by Foster and
Kesselman is called Globus and is generally
recognized as a very effective way to approach this
type of distributed high performance computing.

Another, more localized version of this concept, is that
of using all of the idle PCs on an organization’s LAN.
This involves running processes on the various PCs
making those processors available to the central user
when they are not in use by the PCs “owner.” When
the owner interfaces with his computer in any way, it
immediately suspends the remote process and
redelivers control to the owner. One popular program
providing this service is Condor (Litzkow, 1998.) This
technique is a natural choice for a type of computing
that does not need cycles on demand. One nationally
distributed use of this concept is doing signals
processing as part of the search for extraterrestrial
intelligence.

64

cameras
Text Box

Parallel Data Handling

The two foci of this paper are parallel computing and
advanced data handling techniques in FMS. While
much of the issue of data handling is appropriate for
the section on data analysis, some portion of it is more
closely tied to parallel processing. Parallel distributed
processing both enhances and encumbers data
collection, storage and retrieval. One of the major
daily uses of high performance computing is the rapid
processing of huge masses of transactional data by
retailers and financial institutions, an indication of its
value in this arena.

Like parallel processing, there is an extensive
experience base in parallel data handling. At the
Information Sciences Institute, a distributed data
system has been developed to support the SAF
simulations. Client applications communicate using
RTI routines and data that is identified is stored on
local disks at each node. A central aggregator acts to
query the tasks, when desirable, and collects all
information at the end of the simulation. The data
content is then analyzed and archived. As it is new
technology, the techniques for maximizing the utility
of the parallel capabilities are not universally practiced,
but the expertise is easily accessed.

Figure 4. Tertiary storage tape silos at USC.

ADVANCED DATA ANALYSIS

As simulations have moved from the gym floor to the
computer, a similar change has taken place in the
means of assessing the results of the exercises. When
the SAFs were first used to train tank crews, the most
important factor was face validity. As long as the
tanker trainee perceived the representations as realistic,

the simulation was considered to be a success. Now
that the community has moved from a few vehicles to
more than one million vehicles, the need for a more
elaborate approach has become clear. Policymakers
and leaders of the simulation community now seek new
ways to exploit the data being collected. (Dubik,
2003).

Additionally, this country no longer has the luxury
enjoyed in past wars of taking months to mobilize
technology for defense efforts, and learning from early
combat experience to hone later tactics. Today’s
battlefield is much more technologically loaded,
complex and fast-paced (Cebrowski, 2000). It follows
that there is a need for more complex, faithful and
illuminating simulations of future battlespaces. The
insights needed must be more timely and of greater
specificity, in order to defend against new foes who are
less identifiable, less predictable and more capable of
attacking asymmetrically.

One of the first issues of concern is defining just what
the simulation community and government leaders
should and can extract from the simulations. Rather
than considering this issue de novo, much can be
learned from the Operations Research approach
(Kleijnen, 2001). Many of their techniques have
already been implemented on SPPs and their rigorous
analysis of critical parameters is very useful.

Advances in Database Technology

As data sets have grown exponentially larger and more
complex, so also has the technology grown to query
that data and return useful and timely result sets. While
the expenditures of the DoD are not insignificant in
this field, much of the productive innovation is being
delivered out of the commercial database market and
much of the intellectual leadership resides on the
campuses of the U.S.’s top research universities.
Search engines such as the currently pre-eminent
“Google” respond rapidly and accurately in non-
rigorous, but demanding, civilian situations. The
military analyst, while retaining the same needs for
excellent interface, speed, accuracy, relevancy and
scope, also requires a greater assurance that data
ascertained represents sufficient, and accurate results
of relevant materials. The high performance
computing centers provide a common ground where
these diverse database professionals meet.
Synthesizing the advances from all of these disparate
fields arguably provides the synergy necessary to meet
the rapidly expanding needs of the FMS community.

65

Interservicndustry Training, Simulation, and Education Conference (I/ITSEC) 2004

Data Mining

Data mining techniques are defined here as the
extraction of useful patterns and modes from data sets
that are often large. More particularly we, and others,
use the term to specially imply the extraction of
insights from databases for which that data structure
was not originally designed.

Some authors have described data mining as lying at
the intersection of statistics, machine learning, data
management, pattern recognition, artificial intelligence
and other related disciplines. The authors see it as the
application of myriad techniques to accomplish its
goals, but not subsuming all of these techniques into
itself. Its focus on “…unsuspected relationships ...”
and summarizing data in “… novel ways that are both
understandable and useful …” (Hand, 2002) is the
capability that is seen as most promising for FMS data
analysis.

Data mining can be more generally said to require
some significant effort in each of the following tasks:

1. initial data analysis to gain understanding of
organization and visualization possibilities

2. an attempt at describing a loose-fitting, but
acceptable model of the data under analysis

3. the creation of a model capable of predicting
the results and the relationship of those
results to certain input parameters

4. the final analysis of the data sets with the
final product being not only the discovered
relationships, but also the real-world insights
that such relationships support

Simulations of the order discussed in this paper may
generate as many as 1,600,000,000 data points (1,600
data elements per entity for 1M entities.) With such
vast amounts of data, not all useful analysis can be
done real-time, nor is it optimally productive to do so.
The common result is that reams of recorded data sets
are discarded as too cumbersome to be of analytical
use. Data mining tools offer promise in that they allow
the analyst to find useful information and patterns
amidst the mass of data points even after the simulation
is completed

With the power of scalable parallel processor
supercomputers, once simulation results have been
characterized and values ascribed to various outcomes,
the recursive analysis of the data will undoubtedly find
useful new views of that which critical to the outcome.
For example, using data from numerous iterations of a
flight simulation designed solely for training, one

might find a pattern of inexperienced pilots tending to
overshoot their targets. Without making the effort to
analyze such data or to create effective tools for sifting
through the vast amount of noise to find useful
information, the opportunity to discover such useful
patterns is lost. Data mining tools help to isolate not
just the story from the activity, but the wisdom to be
gained there from.

The data mining process does require efforts beyond
traditional simulation analysis. Normally data mining
requires all or some of the following:

1. Achieving a thorough understanding of the
representations’ inherent characteristics and
organization (e.g., parameters of the entities,
descriptions of their activities).

2. Selecting methods of defining and comparing
the data in such a way that it will yield
quantifiable results that can be compared
(e.g., losses, mission success, time).

3. Discovering, defining and applying an
algorithm to compare results with input
parameters (multi-variate studies of data sets).

4. Analyzing and implementing those data
management techniques that will enable and
facilitate steps one through three.

The tasks above need not make demands on the
structure of the data nor the means for attaining it. By
its very nature, data mining presents low cost
opportunities for gains in insight and understanding
from simulations of almost any sort with little to no
impact on or cost to the simulation itself.

Data mining has historically proven to be an effective
tool in numerous fields. Trigon Blue Cross Blue
Shield uses data mining techniques to identify early
indicators of serious disease, thus allowing them to
effectively treat patient before they become seriously
ill. Data mining methods helped retailer Williams-
Sonoma save millions in advertising costs without
losses in sales by creating a targeted system for
catalog distribution. Using data mining technologies,
banks have developed better credit scoring models that
more accurately predict applicants that may default on
loans. In science, data mining techniques have been
used to identify new binary stars by using radio
telescope data collected for mapping, but which
serendipitously contain the characteristic oscillation
frequencies of such stars yet undiscovered (Moore,
1998). Similarly, the authors believe that unsuspected
insights that will save lives, money and missions lie
deeply imbedded in the data being generated today by
FMS.

66

cameras
Text Box

Interservice/Industry Training, Siation, and Education Conference (I/ITSEC) 2004

As increasingly complex simulations produce larger
and larger datasets, data mining techniques will help
the analyst sift through that mountain of data in order
to find and quantify useful relationships and patterns.
Increased computing power and faster computational
capabilities only increase the opportunity to find
useful patterns. While the authors do not represent that
data mining will solve all problems nor discover all
relationships of interest, they do accept the notion that
it has the potential of discovering many new
relationships, some of which may enable significant
new capabilities or prevent monumental losses.

Evolutionary Computing

Another area of significant opportunity lies in the
application of the techniques described by the Fogels
in their work on Evolutionary Computation. (Fogel,
2000) Many of the new battlefield challenges
represented by the relationships of the data described
above are far removed from the current understanding
of defense strategies. They will not be observed,
presumed or described by even the most rigorous
analysis of the data. Novel and asymmetric threats are
continually and rapidly evolving. These new threats
are being driven by groups whose one remaining
effective weapon may be their tactical innovation and
the resultant element of surprise. In this they are aided
and abetted by their remoteness from the defense
analysts in topics such as their value system, goals,
training, and zeitgeist.

The family Fogel presents a way to examine a virtually
unlimited horizon of possibilities by using techniques
that perturb the physically accurate simulations of the
world without regard to the constraints of the
expectation or creativity. They replace the rule-based
foundation of the Monte Carlo simulations with the
concept of an entity that is able to freely roam the
range of possibilities, with an appropriate feedback
loop to help in optimizing the path to the goal. Basing
their work on the areas of artificial intelligence, expert
systems and neural net training, the evolutionary
computer scientists further look to the biological
paradigms popularized by Charles Darwin in his work
on the evolution of animals. This group eschews
slavish imposition of genetic rules and prefers to let
electronic intelligence finds its own path in parallel
with biologic evolution.

Applying the concepts laid out by these evolutionary
computational scientists has the promise of establishing
unimagined methods and threats. Should the
evolutionary computing process result in the
identification of an unnoticed vulnerability or the

determination of a new threat, the defenses could be
altered, steps could be taken to ameliorate the losses, or
contravening punitive actions aimed at the attackers
could be imposed.

Genetic Algorithms

In a variant of the work by the Fogels, David Goldberg
reports significant success in applying more stringently
biologic rules to his analysis (Goldberg, 2002). He
sees the genetic evolutionary driver as having been
tested over the millennia and therefore not likely to be
deficient. His application of genetic rules is similarly
successful in the test phases of his work. He feels the
insights he gains are more likely to be in accord with
the behaviors observed in actual life. Dr. Goldberg has
used his techniques to model both organizational
entities such as small populations and physical
phenomena such as gas pipelines. His approach does
suggest a very supportable relationship between his
data and the observed data in the population under
study and the pipeline under observation.

The selection between evolutionary computing and
genetic algorithms can be left to the user as an
exercise. In each case, the identification of a novel
concept would have to sustain the challenge of reason
and the governmental vetting process prior to funding a
new defense or the acceptance of a new approach. The
caveat to be remembered is not to disregard novel
approaches and valid insights.

Monte Carlo Analyses

 Many of the simulations in use by the services today
rely heavily upon Monte Carlo techniques. These
simulations have a pre-established rule set and
distribution or likelihood for each major activity as was
described above. As noted earlier, these simulations
are not deterministic and often the same basic initial
definition is executed several times (hundreds of runs
are not uncommon) to examine the distribution of the
final outcomes, (Horne, 1999). This work is often
analyzed by plotting out a series of two dimensional
solution spaces on a three dimensional graph, as in
Figure 2, and visually identifying the optima and their
relation to one another for each pair and then
estimating the interrelation of the multivariate group.

Based on the work of a physicist at Caltech, the OTCI
company has developed a tool that can quantify the
degree to which the input parameters affect the final
outcome. This can be done in n dimensions, which
would be an improvement on the visual analytical
procedure outlined above. Further, this procedure

67

cameras
Text Box

Interservice/Industry Training,imulation, and Education Conference (I/ITSEC) 2004

yields very interesting results in fewer runs, sometimes
orders of magnitude fewer (Johnson, 1999). The
technology is currently implemented for financial
analyses, but could be “ported” over to battlefield
simulation analyses with a high expectation of efficacy
and a reasonable hope for better analytical products.

.

IMPLEMENTATION EXAMPLES

There are both examples of successes and of well-
documented plans for how the techniques reviewed
above can be implemented in the future, including
three easily envisioned ways to approach the scalable
parallelization of a simulation. First, design the code
as a well-parallelized program from the beginning.
Second, after reviewing existing code, completely
rewrite an existing code base in a scalable parallel
manner. Third, take the code as it is and implement a
new “wrapper” around the code that makes it scalable.
Two of the noted implementations have been seen in
the intelligent agent, non-deterministic variety of
simulations: SF Express/JESPP (Joint Experimentation
on Scalable Parallel Processors) and Project Albert.

In SF Express, the ModSAF code was enhanced with
communications routers written in Message Passing
Interface (MPI). The routers enabled scalability both
within the SPP mesh and across the nation. This was a
successful example of distributed, heterogeneous
supercomputing. Scalability was measured in
comparing the times experienced in communications
activity as the size of the sample increased.

In JESPP, the team was asked to make the JFCOM’s
JSAF simulation much more scalable (see Figure 5)
and portable to Linux clusters of the 256 node class.
JFCOM needed to “field” more than a million vehicles
in an urban setting.

N
um

be
r o

f E
nt

iti
es

Number of Processors

Ideal

Scalable

Non-Scalable

1 M

500K

400 200 100 300 500

Figure 5. Notional Scalability using Mesh Routers

This was necessary to test many concepts, including
the need to assess various simulated sensor platforms

and associated systems in their ability to discriminate
combatants from non-combatants.

Previous implementations on LANs did not simulate
more than 30K vehicles. In making the code more
scalable and running it on a series of Linux clusters,
the JESPP team was able to achieve more than
1,000,000 vehicles (Lucas, 2003 and Helfinstine,
2003). The approach they used is worth future
consideration. It entailed the careful study of the
simulation code in use, JSAF, and then constructing a
system of very scalable software routers to make the
code capable of effectively using the hundreds of
processors in large Linux clusters. The code base itself
was not significantly impacted and the software routers
were designed to accommodate as best they could the
almost daily changes in JFCOM’s growing and
dynamic needs, which caused frequent modifications to
the underlying JSAF code. To achieve scalability, the
effort engaged computational scientists with extensive
backgrounds in physical science simulations who had
the intellectual and creative skills to rapidly understand
and to effectively enhance the code.

Project Albert has taken a different track. From the
beginning, the code was constructed with a kind of
built-in scalability. The basic idea of Brandstein and
Horne was that Albert would not have a fully fleshed
out simulation, but would be convey the “essence” of
the activity running in a very small module that can be
run over and over. The Project Albert crew has
worked very closely with the parallel-computing
experts at the Maui High Performance Computing
Center. The code base is kept quite small by design. It
has less than ten per cent of the lines of the JSAF code.

While this de novo approach has the benefits of
elegance and simplicity, it is, by definition, only open
to the developers who are producing entirely new
programs. The authors find that the FMS community
frequently adapts and expands existing code and one
recent major new, “bottoms-up” FMS program was
recently terminated (Tiron, 2003). Nonetheless,
developers of new systems should resist being seduced
by the ease of single-processor designs, as experience
has now shown that there will be pressure to expand
along the dimensions of complexity, resolution, and
magnitude, hence requiring or benefiting from parallel
processing.

In looking at appropriate data analysis techniques to
implement, one issue that must be settled is that of the
users’ goals in this analytical process. As this seems
rather intuitive, there is an inclination to skip, or at
least slight, this step. Previous scholarship bears

68

cameras
Text Box

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

careful attention. Going outside the narrow confines of
FMS, it is clear that Operations Researchers (OR) have
studied comparable issues for a century. Some
members of the OR community have been active in
helping simulation groups understand their goals and
analyze their results (Sanchez, 2002).

Ongoing Work

Many of these programs are ongoing. JFCOM has
committed to the JESPP project for the foreseeable
future. The award of the Distributed Center cluster to
JFCOM will provide a natural home for the technical
life of the cluster. Additional clusters can be enlisted
to provide more processing power, and the expandable
capabilities of the JESPP scalable routers produce the
ability for the JSAF code to utilize all of the processors
that can be gathered for an exercise. An extension of
this work into the analysis of homeland security issues
for air traffic control has been advanced and the
authors consider this a well-founded application of the
concept of taking code as is and enhancing it with
augmenting wrappers.

The Albert project continues to be a vital part of the
study of maneuver warfare. In addition to studying
new ways of utilizing large parallel computers, Albert
seeks out new ways to analyze the huge amounts of
data presented by the multiple run method. As the
project increases the number of important variables,
the difficulty in visualizing multi-dimensional solution
spaces may find resolution in the work of Monte Carlo
simulators in the financial community.

This generates an analytically valuable data surfeit that
may be found in the vast quantities of data that could
be collected from training simulations. As pilots,
sailors and tankers train in their simulators, their
activities’ data make a fertile field for other analyses.

Adopting either of the two methods discussed above,
designing for scalability or augmenting with scalable
wrappers, should produce several benefits. First, both
should create not only early scalability but imbue the
code with an ability to scale further and make early use
of new processor technologies. Second, experience
has shown that the parallelization process itself
frequently improves the serial code and, not
infrequently, leads to insights into the subject
phenomena. Third, careful application of these
techniques should not disturb the development or use
of the delivered code. Fourth, cost, schedule and
performance can be kept in balance.

There are actions that will reduce potential disruptions
and produce the best results. The most important of
these may seem obvious, but it is not infrequently
overlooked - the reliance on experienced parallel
computational scientists. Parallel programming is a
unique skill-set. Attempts to automate the process of
parallelizing code have not been particularly fruitful,
especially in programs where coarse-grained
parallelism is appropriate. A research and
development group seeking to make their code scalable
would be well advised to identify a successful effort
implementing comparable code on an SPP and then
engage the parallel programmers who were responsible
and who have exhibited a transferable aptitude.

TECHNOLOGY IMPACT

It is the firm conviction of the authors that the
technology detailed above will prove to be a vital asset
for the FMS community and then have an essential
impact on the defense of the nation. The necessity of
dealing with the commingling of combatants and non-
combatants, the current mandates to conduct operations
with minimal disruption of civilian infrastructure, and
the ability to wage effective warfare against an
asynchronous enemy all will be addressed more
completely using the advanced techniques discussed.

However, the FMS community has not shown as much
acceptance of these technologies as might have been
expected. At the 2003 IITSEC meetings, only the
JFCOM papers on the use of Linux Clusters evidenced
implementations in everyday use (Lucas, 2003;
Helfinstine, 2003; and Williams, 2003). The three
other papers mentioning these topics (Pratt, 2003;
Schiavone, 2003; and Mielke, 2003) took valid, but
much more theoretical, perspectives. This year may
not show much of an increase. A review of the
submitted titles for IITSEC 2004 reveals the lack of a
single mention of the terms Beowulf, supercomputer,
parallel processing, data mining, evolutionary
computing, sensitivity analysis or high performance,
although these issues are discussed in other papers by
our JESPP team members who were instrumental in the
effort to enable larger-scale entity counts in the Urban
Resolve experiments at JFCOM.

The ability of the analyst to distinguish between non-
combatants and enemy forces hiding among them
relies on increasingly effective sensors, well-designed
analytical systems, and advanced training in realistic
environments. Current limitations in resolution, entity
count and sophistication of behavior interfere with all
of these. Simulation experimenters report that analysts
engaged in early exercises had so few civilian entities

69

cameras
Text Box

Interservic/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

in their environment that they were inclined to opt for
destruction of all vehicles under observation, when
there was doubt as to their identity. Reasonable
choices were also restricted when the number of
civilians was smaller than the number of enemy
combatants, a condition driven by the lack of compute
capacity on platforms consisting of PCs on LANs.

The lack of sophistication also can render an exercise
less meaningful. Human operators are very sensitive to
behavior differences. If computer constraints enforce
very simplistic behaviors on modeled civilian vehicles,
the operators quickly can distinguish them from the
more complex behavior capabilities of the combatant
vehicles, e.g. if the simulation controllers turn off
collision avoidance to save on inter-visibility
calculations, the operators will quickly perceive that
any vehicle that passes right through another is not a
combatant. Neither good training nor good analytical
input can result from similarly constrained conditions.

Additionally, the not uncommon reliance on SME
reviews of simulations, while effective and useful, may
be missing valuable insights. These insights might
otherwise lead to new strategic concepts or prevent
overlooking significant vulnerabilities. Not yet having
faced the unknown enemy of the future, not knowing
its mind-set, and not having the luxury of learning at a
leisurely pace, the simulation community would be
well-advised to take advantage of the expanded
capabilities presented above in the section on advanced
data analysis techniques.

Orderly retrieval of information using the latest
database techniques will assist human analysts in
pursuing intuitive leads. The innovative techniques
representing data mining can be invoked to extract
even more esoteric concepts and bring these to the
attention of the analysts for confirmation and analysis.
This gives real hope for identifying asymmetric tactics
that might not be foretold by traditional military
analysis. The concepts of evolutionary computation,
genetic algorithms, and Monte Carlo sensitivity
analyses also show promise in making sure nothing is
missed in the search for security.

A Development Path: Successful Rapid Prototyping

Transitions from current simulation methods to full
exploitation of present and near-term computational
capabilities and practices take effort and significant
experimentation. It is perhaps best to illustrate the
process with a particular example: a suite of large
field-of-view sensors attempting to detect isolated
“suspicious” behaviors within a large population of

normal (i.e., “civilian”) entities. This has been, in fact,
a major thrust of ongoing JSAF developments, with the
Simulation of the Locations and Attack of Mobile
Enemy Missiles (SLAMEM™) surveillance/tracking
software system fed by detections from simulated
civilian vehicles (euphemistically called “clutter”)
within the JSAF simulation
.
The JSAF/SLAMEM combination has so far been
rather fruitful. For present purposes, it is sufficient to
consider three particular items:

1. In order to support large numbers of clutter
entities, the clutter models within JSAF had
to be quite simplistic, with, e.g., very little
“self-awareness” among clutter entities.

2. While the SLAMEM-JSAF system exploits a
number of clever procedures to distribute
much of the computational burden (in
particular, some of the simulated signal
processing), the tracking and situation-
assessment procedures within SLAMEM
were originally done on a single processor,
thus providing a significant constraint on the
size of the underlying simulated scenario.

3. The very large numbers of simulated
detections within a typical SLAMEM-JSAF
were largely “unexploited”, beyond the
immediate task of driving track formation
and feeding operator displays.

There are a number of straightforward technology
“patches” for many of these problems, including
parallelized tracking algorithms, and a much richer,
distributed database system supporting data mining and
“discovery” activities. Incremental developments along
these paths are inevitable. The problem, of course,
comes with the word “incremental.” The standard
practice of inserting pieces of computational
technology, as though one were simply using higher
clock rate processors, drives the system along a path
dictated by “ease of insertion” rather than ultimate end-
user needs. In the authors’ opinion, it is definitely
progress, but it is unlikely to be progress that will ever
catch up to available capabilities.

Consider, again, the conceptual SLAMEM problem. At
a high-enough level, the outcome of present
experimentation must point to the desired or idealized
product: Operators are watching displays of highly
processed tracking results, looking for indications of
both “suspicious behavior” and reactions to
interdiction activities. Human interpretation of these
data will always be subjective. The details that could
be provided by scaled computational power alone are

70

cameras
Text Box

overwhelming, if not overwhelmingly useless.
Operators needed dynamic access to the available data
at several scales of both “resolution” and “historicity”
in order to assign likelihoods to the important bottom-
line issues of asymmetrical combat.

It can be argued that the ongoing FMS development
path would not reach this goal (or rather, if it does, it
will do so very, very slowly). This is not to say that
standard practices should be abandoned! The authors
maintain that incremental development and
implementation is the only sane way of improving the
state of the art while maintaining capabilities.

The authors suggest a parallel development track is
needed, emphasizing the “top-down” approach with
the goals of identifying: 1) inherent limitations in
standard practices and 2) technology needed to resolve
the identified problems. The intent of the second point
must be clarified/emphasized. Rather than ask the
implicit “standard practices” question (“What
incremental capabilities can be added through readily
available technology?”), a very different question must
be asked for optimal implementation: “What
technology is needed to achieve required capabilities?”
Viewed from the perspective of the idealized ultimate
user, the system to which JSAF/SLAMEM activities
are pointing must be database driven and must address
the following questions: “What information will best
aid the decision maker?” and “What automated
discovering and mining procedures are needed to make
this data perceivable to the decision maker?”

CONCLUSION

There are several new technologies that are available
and are of demonstrated utility to the simulation
community. There also exists a body of practice that
makes adoption of these capabilities more productive
and less disruptive.

September 11, 2001, gave a new immediacy to the task
of adequately preparing for unexpected threats. While
the techniques proposed in this paper may not have
helped avert that tragedy, the authors maintain those
techniques may well increase the opportunity for the
analysts to discover future threats and assist in working
out the best way to defend against such destruction.
Considering the huge losses that the nation incurred
from that one attack, the efforts required in
implementing the described techniques pale in
comparison.

Data interpretation is a critical task in any war,
including the war on terrorism. Simulation systems

may well benefit from enhanced data interpretation and
that should do much to provide a real-time laboratory
for refining and exploiting advances in data analysis
that have been made over the last decade.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the members of the
ISI JESPP team who have contributed to this paper
through their efforts and their intellectual stimulation.
Much of the success reported here came from the Joint
Experimentation on Scalable Parallel Processor
project, initiated, directed and funded by the Joint
Forces Command and to a very large degree conducted
on the compute assets of the Maui High performance
Computing Center and other members of the High
Performance Computing Modernization Program.
Without the support and encouragement from all of the
above, none of this would have been possible. This
material is based on research sponsored by the Air
Force Research Laboratory under agreement number
F30602-02-C-0213. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes, notwithstanding any
copyright notation thereon.

REFERENCES

Amdahl, G.M. (1967). Validity of the single-processor

approach to achieving large scale computing
capabilities. AFIPS Conference Proceedings, 30,
483-485.

Ben-Ari, E. (1998). Mastering Soldiers: Conflict,

Emotions and the Enemy in an Israeli Military Unit.
New Directions in Anthropology, 10. Oxford:
Berghahn Books.

Brandstein, A. (1998). Data Farming: A Meta-

technique for Research in the 21st Century.
Maneuver Warfare Science Quantico, VA: United
States Marine Corps Combat Develop Command,
93-99.

Brunett, S., Davis, D., Gottschalk, T., & Messina, P.

(1998) Implementing Distributed Synthetic Forces
Simulations in Metacomputing Environments, The
Seventh Heterogeneous Computing Workshop,
Orlando, FL.

Cebrowski, A., & Garstka, J. (1998) Network Centric

Warfare: Its Origin and Future, Naval Institute
Proceedings, 124(1), 28-35.

71

Intersere/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

Ceranowicz, A., Torpey, M., Hellfinstine, W., Evans,

J. & Hines, J. (2002) Reflections on Building the
Joint Experimental Federation. Proceedings of the
Interservice/Industry Training, Simulation and
Education Conference, Orlando, FL.

Ceranowicz, A., Dehncke, R.& Cerri, T. (2002)

Moving toward a Distributed Continuous
Experimentation Environment, Proceedings of the
Interservice/Industry Training, Simulation and
Education Conference, Orlando, FL.

Dubik, J. (2003) Comments made by Major General

James M. Dubik, J9, US Joint Forces Command, at
I/ITSEC in Orlando, FL.

Foster, I. & Kesselman C. (1997) Globus: A

Metacomputing Infrastructure Toolkit. Intl J.
Supercomputer Applications, 11(2), 115 –128.

Fogel, D. (1995) Evolutionary Computation. New

York: IEEE Press.

Gibson, D. (2003) Casualty Estimation in Modern

Warfare. Army Logistician, Nov-Dec 2003 35(6),
34. Fort Lee, Virginia.

Goldberg, D. (1989). Genetic Algorithms in Search,

Optimization, and Machine Learning. Boston,
Massachusetts: Addison-Wesley Publishing Co.

Garlan, D. & Shaw. M. (1993) An Intro to Software

Architecture: Advances in Software and Knowledge
Engineering. World Scientific Publishing, I.

Graebener, R., Rafuse, G., Miller, R. & Yao, K-T.

(2003) The Road to Successful Joint
Experimentation Starts at the Data Collection Trail.
Proceedings of the Interservice/Industry Training,
Simulation and Education Conference, Orlando, FL.

Hand, D., Mannila, H., Smyth,. P. (2001). Principles of

Data Mining (Adaptive Computation and Machine
Learning). Boston, MA: MIT Press.

Harnad, S. (1989) Minds, Machines and Searle.

Journal of Theoretical and Experimental Artificial
Intelligence.1, 5-25.

Helfinstine, W. Torpey, M. & Wagenbreth, G. (2003)

Experimental Interest Management Architecture for
DCEE. Proceedings of the Interservice / Industry
Training, Simulation and Education Conference,
Orlando, FL.

Hill, R. W., Gratch, J., & Rosenbloom, P.S. (2000).

Flexible Group Behavior; Virtual Commanders for
Synthetic Battlespaces. Proceedings of the Fourth
International Conference on Autonomous Agents,
Barcelona, Spain.

HPCMP (2004) Computational Technology Areas.

Forces Modeling and Simulation CTA,
(Online)May 13, 2004,
http://www.hpcmo.hpc.mil/Htdocs/CHSSI/cta_descri
ption.html

Horne, G. (1999) Maneuver Warfare Distillations:

Essence not Verisimilitude. Proceedings of the 1999
Winter Simulation Conference. A. Farrington, H. B.
Nembhard, D. T. Sturrock, and G. W. Evans,
Phoenix, AZ

Hull, J. (2002). Options, Futures and Other

Depravities, 5th Ed. New York: Prentice Hall.

Johnson, E., Bergman, L. & Spencer, B. (1999).

Intelligent Monte Carlo Simulation and
Discrepancy Sensitivity. In P.D. Spanos (ed.),
Computational Stochastic Mechanics (pp. 31-39).
Balkema, Rotterdam.

Kevrekidis, I., Gear, C., Hyman, J., Kevrekidis, P.,

Runborg, O. and Theodoropoulos, D. (2003)
Equation-free, coarse-grained multiscale
computation: Enabling microscopic simulators to
perform system-level analysis. Communications in
Mathematical Sciences. 1, 715-762.

Kleijnen, J., Sanchez, S., Lucas, T., & Cioppa, T., in

print, A User’s Guide to the Brave New World of
Designing Simulation Experiments, under revision
for INFORMS Journal on Computing.

Krishnaprasad, S. (2001) Uses and Abuses of

Amdahl’s Law. The Journal of Computing in Small
Colleges 17(), 288–293.

Litzkow, M., Livny, M. & Mutka, M. (1988) Condor -

A Hunter of Idle Workstations. Proceedings of the
8th International Conference of Distributed
Computing Systems, 104-111.

Lucas, R. & Davis, D. (2003) Joint Experimentation in

Scalable Parallel Processors. Proceedings of the
Interservice / Industry Training, Simulation and
Education Conference, Orlando, FL.

 Paper No. 1517 Pag13 of 14
72

cameras
Text Box

cameras
Text Box

Marshall, S.L.A. (2000). Men Against Fire: The
Problem of Battle Command, Norman, Oklahoma:
University of Oklahoma Press.

Messina, P. C., Brunett, S., Davis, D. M., Gottschalk,

T. D. (1997, April) Distributed Interactive
Simulation for Synthetic Forces, In J. Antonio,
(Chair), Mapping and Scheduling Systems,
International Parallel Processing Symposium,
Geneva, Switzerland.

Mielke, R. & Phillips, M. (2003) Development and

Application of an Academic Battle Lab. Proceedings
of the Interservice / Industry Training, Simulation
and Education Conference, Orlando, FL

Moore, G. (1965) Cramming more components onto

integrated circuits. Electronics 38 (8), 114-117

Moore, R., Prince, T., Ellisman, M. (1998) Data-
Intensive Computing and Digital Libraries.
Communications of the ACM.

Pratt, D. & Henningger, A. (2003) Load Balancing for
Distributed Battlefield Simulations: Initial Results.
Proceedings of the Interservice / Industry Training,
Simulation and Education Conference. Orlando, FL

Sanchez, S.M. and Lucas, T.W. (2002) Agent-based

Simulations: Simple Models, Complex Analyses,
Invited paper. Proceedings of the 2002 Winter
Simulation Conference. Institute of Electrical and
Electronic Engineers: Piscataway, NJ.

Sanne, J. (1999). Creating Safety in Air Traffic
Control. Unpublished doctoral dissertation, Institute
of Tema Research, Linköping University, S-581 83
Linköping, Sweden.

Schiavone, G. Dolezal, M., Tracy, J., Secretan, J., &

Mangold, L. (2003) Beowulf Supercomputing for
Mobile Applications. Proceedings of the Interservice
/ Industry Training, Simulation and Education
Conference. Orlando, FL

Sterling, T., Salmon, J., Becker, D. & Savarrese, D.

(1999) How to Build a Beowulf. Boston, MA: MIT
Press.

Tiron, R. (2003), Pentagon Cancels Program with

Checkered Past, National Defense Magazine,. From
http://www.nationaldefensemagazine.org/article.cfm
?Id=1081

USNews. (1988, August 15) Was stress the villain in

the air tragedy? U.S. News and World Report,
105(7), 13

Van der Steen, A., & Dongarra, J. (2003) Overview of

Recent Supercomputers. Top 500 Supercomputer
Sites. (Online) February 12, 2003,
http://www.top500.org/ORSC/2003/

van Lent, M. & Laird, K. (1998). Learning by

Observation in a Complex Domain. Proceedings of
the Knowledge Acquisition Workshop. Banff,
Canada.

73

Intersvice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

Advanced Message Routing for Scalable Distributed Simulations

Brian Barrett Thomas Gottschalk
University of Southern California California Institute of Technology

Marina del Rey, CA Pasadena, CA
bbarrett@isi.edu tdg@cacr.caltech.edu

ABSTRACT

The Joint Forces Command (JFCOM) Experimentation Directorate (J9)'s recent Joint Urban Operations
(JUO) experiments have demonstrated the viability of Forces Modeling and Simulation in a distributed
environment. The JSAF application suite, combined with the RTI-s communications system, provides the
ability to run distributed simulations with sites located across the United States, from Norfolk, Virginia to
Maui, Hawaii. Interest-aware routers are essential for communications in the large, distributed
environments, and the current RTI-s framework provides such routers connected in a straightforward tree
topology. This approach is successful for small to medium sized simulations, but faces a number of
significant limitations for very large simulations over high-latency, wide area networks. In particular,
traffic is forced through a single site, drastically increasing distances messages must travel to sites not near
the top of the tree. Aggregate bandwidth is limited to the bandwidth of the site hosting the top router, and
failures in the upper levels of the router tree can result in widespread communications losses throughout the
system.

To resolve these issues, this work extends the RTI-s software router infrastructure to accommodate more
sophisticated, general router topologies, including both the existing tree framework and a new
generalization of the fully connected mesh topologies used in the SF Express ModSAF simulations of 100K
fully interacting vehicles. The new software router objects incorporate the scalable features of the SF
Express design, while optionally using low-level RTI-s objects to perform actual site-to-site
communications. The (substantial) limitations of the original mesh router formalism have been eliminated,
allowing fully dynamic operations. The mesh topology capabilities allow aggregate bandwidth and site-to-
site latencies to match actual network performance. The heavy resource load at the root node can now be
distributed across routers at the participating sites.

ABOUT THE AUTHORS

Brian Barrett is a programmer analyst on the JESPP project, Information Sciences Institute, University of
Southern California. Brian's research has focused on communication issues for large-scale high
performance computing systems. While at Indiana University, Brian was a lead developer of the
LAM/MPI implementation of the Message Passing Interface (MPI) standard. He received a B.S. from the
University of Notre Dame and an M.S. from Indiana University, both in Computer Science.

Thomas D. Gottschalk is a Member of the Professional Staff, Center for Advanced Computing Research
(CACR) and Lecturer in Physics at the California Institute of Technology. He has been with CACR for
nearly a decade. Much of his research has been on the use of parallel computers to simulate various
physical phenomena. His instructional duties include his upper division course on Statistics for Physics
Graduate students. He received a B.S. in Physics from Michigan State University and a Ph.D. in
Theoretical Physics from the University of Wisconsin.

74

cameras
Text Box
Appendix G

cameras
Text Box

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

Advanced Message Routing for Scalable Distributed Simulations

Brian Barrett Thomas Gottschalk
University of Southern California California Institute of Technology

Marina del Rey, CA Pasadena, CA
bbarrett@isi.edu tdg@cacr.caltech.edu

Large Scale Forces Modeling and Simulation

Recent experiments within the Joint Forces
Command (JFCOM) Experimentation
Directorate (J9) demonstrate the feasibility of
forces modeling and simulation applications in a
large field of play with fine-grained resolution.
Simulating such battle spaces requires large
computational resources, often distributed across
multiple sites. The ongoing Joint Urban
Operations (JUO) experiment utilize the JSAF
application suite and the RTI-s Run Time
Infrastructure to scale to over 300 federates
distributed across the continental United States
and Hawaii (Ceranowicz, 2002). The JUO
exercise has shown the scalability of the
JSAF/RTI-s infrastructure and of interest-based,
router-managed communication. At the same
time, the simulation has highlighted a need for
improvements in the communication
architecture.

Figure 1: Software routing topology for the

JUO exercise.

The current JUO network topology is a tree of
software routers (see Figure 1 for wide area
network diagram). The hub and spoke network
model introduced by this tree infrastructure
increases latency between distributed sites and
exposes the entire network to a single point of
failure. The tree topology also poses a scalability

limitation within the distributed sites. It is our
belief that an improved routing infrastructure is
required for the continued success of large-scale
entity level simulations, particularly as entity
counts and complexity/fidelity increase.

This paper presents an improved routing
architecture for large-scale HLA environments,
using fully connected meshes as the basic
topology. These mesh routers provide a scalable
solution for interest-managed communication, as
well as a more accurate mapping of software
routing to available network topologies.

Scalable Parallel Processors

The JUO exercise requires a computational
ability unavailable using traditional groups of
workstations. Scalable Parallel Processors
(SPPs) provide the required computational
power, with modest increase in development and
execution effort (Lucas, 2003). A SPP is a large
collection of processing elements (nodes)
connected by a fast communication network.
Common SPPs include the IBM SP, SGI Origin,
Cray X1, and Linux clusters. Traditionally, SPPs
provide services not available in a group of
workstations: high speed networks, massive disk
arrays shared across the entire resource, and
large per-CPU physical memory. In addition,
SPPs generally have uniform environments
across the entire machine and tools for scalable
interactive control (starting processes across 100
nodes takes the same amount of time as it does
across 10).

Linux clusters have recently become a suitable
platform for the high performance computing
community and are therefore readily available at
Department of Defense Major Shared Resource
Centers. These clusters are ideal platforms for
use in the JUO exercise because of their close
heritage to the Linux workstations used in the
interactive test bays. Although there is additional

75

cameras
Text Box

software to tie the cluster into one SPP, the basic
libraries, compiler, and kernel are often the same

on a cluster as on a workstation.

RTI-s

RTI-s provides the HLA Run Time Infrastructure
(RTI) for the JUO federation. RTI-s was
originally developed for the STOW exercises, to
overcome the scalability and performance
limitations found in RTI implementations at the
time. It should be noted that RTI-s is not a fully
compliant HLA/RTI implementation.
Specifically, it does not implement timestamp
ordered receives, ownership transfer, and MOM
interactions. In addition, federates discover new
objects at first update, rather than at creation
time. The JSAF applications are receive-ordered
by design and are optimized to respond best to
delayed object discovery, so these limitations are
not constraining in the existing environment.

RTI-s utilizes a flexible data path framework (an
example of which is shown in Figure 2), which
allows for use over a number of communication
infrastructures. Currently, there is support for
multicast UDP, point-to-point UDP, point-to-
point TCP, and MPI (using a send/receive
architecture). Bundling and fragmenting of
messages is provided by components that can be
reused for TCP and UDP communication.
Kerberos authentication for data packets has
been implemented for TCP communication.

Figure 2: RTI-s data path architecture for

TCP communication.

Point-to-point modes in RTI-s uses separate
routing processes for communication. The
routers provide data distribution and interest
management for the federation, which would be
too heavy for a simulator to handle. Presently, a
tree topology (Figure 3) is used for connecting
routers. A tree presents a simple structure for
preventing message loops, as there are no
potential loops in the system.

Figure 3: Tree topology used by RTI-s for

point-to-point message traffic.

Synthetic Forces Express

The Synthetic Forces Express (SF Express)
(Brunett & Gottschalk, 1998) project first
demonstrated the suitability of both the SPP and
mesh router concepts for discrete entity
modeling. The SF Express project extended the
ModSAF simulation engine (Calder, 1993),
focusing on the communication protocols to
extend scalability.

In December 1996, the SF Express team
achieved a 10,000 vehicle simulation using a
single 1,024-node Intel Paragon machine.
Message routing within the SPP used the
Message Passing Interface (MPI) (MPI Forum,
1993). Later work allowed the code to run on
multiple SPP installations across a variety of
networks by introducing gateways between
SPPs. The gateway routers were connected using
UDP. With these improvements, the project
achieved a simulation of 50,000 vehicles using
1,904 processors over six SPPs.

The structure of the SF Express router network is
shown in Figure 4. The basic building block for
this architecture is the triad shown on the left,
with a "Primary” router servicing some numbers
of client simulators. Two additional routers
(known as the “PopUp” and “PullDown” routers)
complete the basic triad. These routers distribute
(PopUp) and collect (PullDown) messages from
client simulators outside the Primary’s client set.
The SF Express architecture scales to increased
problem size by replicating the basic triad and
adding full up � down communication links
among the triads, as shown in the right hand side
of Figure 4.

76

Interservice/Indtry Training, Simulation, and Education Conference (I/ITSEC) 2004

Figure 4: Basic building block of the SF
Express routing network (left) and an

example mesh topology (right).

While the SF Express project was quite
successful, it had no life beyond a number of
50K-100K entity simulation demonstrations.
This was expected, for a number of reasons. For
example, the algorithms and software developed
for that project were not compatible with
ongoing SAF developments (e.g., the move to
RTI). Finally, the MPI-based communications
used within the SPPs did not tolerate the restarts
and process failures found during a long running
exercise

Designing for Scalability

As previously mentioned, the JSAF/RTI-s
application suite currently scales to over 300
federates and over a million entities (including
simple clutter). However, current routing
topologies limit the scalability of the overall
system. In order for an interest-based
communication infrastructure to scale, three
conditions must hold over an arbitrary interval of
simulation time:

• A given client must generate a bounded
number of messages

• A given client must receive a bounded
number of messages.

• Given the previous two points, the
communication through any given router
must also be bounded

An interest management system and careful

federate design achieve bounded client
communication. Bounded router communication
is a function of network design and can be
achieved using a mesh topology.

Interest Management

The aggregate amount of data produced by the
JUO federation is greater than any one federate
is capable of processing. An interest
management system is used to limit the amount
of data a federate must process (Rak, 1997). The
federate declares which information it is

interested in (“e.g., red force tanks in position
cell X”) and the RTI is responsible for ensuring
only this subscribed information is received by
the federate.

When used in a multicast environment, RTI-s
utilizes the concept of multicast channels for
filtering, with interest states having associated
channels. The message is multicast to the
federation’s network and filtered on the
receiving side. The receiver filters the message at
the kernel level, so the application never sees
messages for interest states it is not interested in.
Overhead when no interest states are set is
relatively small, but non-zero. Due to the limited
number of available multicast channels, the
number of interest states is limited (increasing
the amount of traffic associated with each
interest state).

When running in point-to-point mode (using
either TCP or UDP), interest management is
send-side squelched. Software routers maintain
interest state vectors for each connection and
only send messages to clients that have
expressed interest in a message type. The
overhead for a federate to exist in the federation
without any expressed interest is almost zero.
Because interest states are not tied to hardware
and operating system limitations, the number of
available interest states is bounded only by how
much memory can be allocated to interest
vectors. This is an enormous improvement over
multicast IP. It was also one of the innovations
of SF Express.

An interest management system provides only
the infrastructure for bounding the data flowing
out of and into a particular simulator. The
simulator must show care in declared interest
states to prevent subscribing to more data than it
is capable of processing. For the purposes of
analyzing the scalability of routing
infrastructures, we assume that the simulator
limits interest declarations to guarantee bounded
communication. In both the earlier SF Express
and current JUO experiments, this assumption
appears valid.

Routing Scalability

The scalability of the basic Mesh Router network
is easily argued as follows. It is first necessary to
assume that the underlying simulation problem
itself has a scalable solution. This means a

77

cameras
Text Box

bounded message rate on the Primary � PopUp
and PullDown � Primary links within a basic
triad, and bounded Up � Down message rates
within the interconnection links of the full
network. The impediments to complete
scalability of the mesh architecture have to do
with interest declarations among the upper router
layers. Each PullDown must announce its
interest to every PopUp. In principle, these
interest broadcasts could be made scalable
through an additional network of communication
nodes (at the associated cost of increased
latencies for interest updates). In practice,
however, these interest updates were not frequent
enough to cause any difficulties in SF Express
simulations with as many as thirty triads in the
full mesh. An experiment with a similar setup
using the current infrastructure shows similar
results. This formally non-scaling component is,
in fact, a sufficiently tiny component of the
overall communications load that
implementation of the “formal” scalability cure
is not warranted for present or near-term
simulation scenarios.

Routing Flexibility

The scalability issues with the tree router
topology of RTI-s have been discussed
previously. Tree topologies also map poorly
onto physical wide-area networks. Figure 1
shows the route taken for any message crossing
multiple sites in the JUO exercise. The path
taken for a message to go from Maui to San
Diego is sub-optimal: the data must first travel to
Norfolk, then back to the west coast. This extra
transmission time increases the latency of the
system, which lowers overall performance. Since
wide-area links often have less bandwidth
available than local area networks, such routing
also places a burden on the Virginia network
infrastructure, which must have bandwidth
available for both the incoming and outgoing
message in our Maui to San Diego example.

Figure 5: Advanced routing topology for JUO

exercises.

The mesh routing infrastructure provides a better
utilization of physical networks by sending
directly from one source to destination router.
The network infrastructure is free to route
messages in the most efficient way available.
Figure 5 shows one possible routing topology for
the JUO exercises, using mesh routers to
minimize the distance messages must travel.

In an ideal world, the entire federation would use
one fully connected mesh for message routing.
The actual routing of messages would be left to
the physical network infrastructure, which has
over 30 years experience in optimizing data.
However, such a configuration is often not
feasible due to performance or protocol
availability. Local area communication is usually
over TCP, pushing error detection from RTI-s to
the network stack. Over wide area networks,
however, TCP suffers bandwidth degradation
proportional to latency, so UDP is used for these
connections. Some SPPs provide neither TCP
nor UDP on computer nodes, instead providing
MPI over a high-speed network) or provide
public access only on a small subset of the
machine. Given these restrictions, a fully
connected mesh is often not a feasible design.

Figure 6: The basic building blocks for a

Mesh Router topology: tree (left) and mesh
(right).

The mesh router provides the ability to design a
flexible network topology that meets the

78

constraints of the network infrastructure while
providing the ability to design a scalable system.
The mesh router’s topology is constructed by
combining two building blocks: a tree (Figure 6,
left) and a fully connected mesh (Figure 6, right).
The two building blocks can be combined to
form meshes of meshes, trees of meshes, meshes
of trees, etc. (Figure 7). The process can be
repeated as often as required to build a suitable
topology. The topology, however, cannot have
any loops, as the routers are not currently
capable of detecting this condition.

Figure 7: Combinations of the basic building

blocks used to generate advanced routing
topologies.

Mesh Router Architecture

The mesh routers developed for RTI-s adopted
many of the design decisions made in the SF
Express project. The router triad concept is
perhaps the most obvious of the design decisions
from SF Express, providing an elegant method of
avoiding “message looping” in the mesh, while
allowing an arbitrary number of routing
decisions to be made when transferring
messages. However, significant design changes
have produced a radically more advanced and
flexible infrastructure.

Flow Control

A tight flow control with Request to Send / Clear
to Send (RTS/CTS) behavior was used in the SF
Express design. SF Express used the mesh
routers only within a single SPP, where latency
was extremely low and available bandwidth
greatly exceeded expected message transfer
rates. The overhead of sending the RTS and CTS
messages would not negatively impact the
performance or scalability of the system. The
communication medium of choice (MPI)
requires pre-posted receive buffers of a known
size, requiring a RTS/CTS protocol for sending
large messages. However, recent trends have
shown CPU power improvements far outpacing
network latency and bandwidth improvements.
On modern networks, a RTS/CTS protocol poses

a significant performance burden. Therefore, the
Mesh Router architecture has an eager send
protocol with messages dropped by priority
when queues overflow.

Application-Independent
"Message" and "Interest" Objects

The Mesh Router software is object-oriented
(C++), with a limited number of standard
interfaces to "user message" and "interest" base
classes. For present purposes, the implications of
this factorization are:

 The Mesh Router system is designed to be
compatible with ongoing changes and
evolution within the RTI-s system,
requiring little more that "re-compile and
re-link".

 The Mesh Router system can support
applications other than SAF/RTI, given
appropriate different instances of the
message and interest objects.

Simplified, General-Purpose Router Objects

The many distinct router varieties ("Primary",
"PopUp", "PullDown", "Gateway") of the SF
Express router network have been replaced by a
single router object, as indicated by the
schematic in Figure 8. Routers simply manage
interest-limited message exchange among a
collection of associated clients. The distinctions
that had been hardwired into the various router
types of SF Express are now summarized by sets
of flags associated with the clients. The flags
(simple boolean variables) specify whether:

 Client is a source of data messages.
 Client is a sink of data messages.
 Client is persistent (non-persistent

clients are destroyed if the
communications link fails).

 Client is "upper" or "lower" (this
simple hierarchy provides the
mechanism to prevent message
cycles).

Figure 8: High level schematic of a router
process (left) and dataflow of router/client

connection (right).

These four flags are sufficient to reproduce the

79

specific communications model of Figure 4 and
a number of other networks, such as the tree
router model available in the JSAF/RTI-s library,
and the schematic Tree/Mesh mixture of Figure
7.

Factorized Communications Primitives

The Mesh Router object design relies on a very
careful isolation/factorization of the underlying
message exchange protocol from the rest of the
software. The essential object design is indicated
in Figure 9 and has three layers:

Figure 9: Schematic design of the Mesh

Router application.

Router Objects: These are little more that smart
lists of objects associated with the clients in
Figure 9. In normal operations, routers simply
execute the fundamental message and interest
manipulation methods for the associated clients.
Routers are also responsible for management of
the overall client list, including:

 Removal of clients that have stopped
communicating.

 Initiation of communications links, as
needed, to specified (persistent) clients.

 Client additions, in response to requests
from external processes.

Client Objects: Managers of the interest
declarations and pending message queues for
each (external) client process.

Pipe Objects: The interface between the
Message / MessageList formalism of the Mesh
Router software and the real world "bits on the
wire" communications to the actual external
processes. The Pipe object base class provides
the last essential factorization of application
specific details from the overall, general Mesh
Router framework.

The communication factorization within the Pipe
class is essential to the general applicability and
ease of use of the Mesh Router system. A

number of specific Pipe classes have been
implemented to date, with the most important
being:

 RtisPipe: Message exchange using the RTI-s
framework. (Indeed, this object has been
built entirely from objects and methods in
the RTI-s library).

 MemoryPipe: Message "exchange" within a
single process on a single CPU. This is
used when two or more router processes
in the sense of Figure 8 and Figure 9 are
instanced as distinct objects within a
single management process on a single
CPU.

The factorization of application-specific
communications mechanisms is, in fact, slightly
more complicated than just indicated. The Pipe
object has sufficient virtual interfaces for data
exchange between a router and a general client.
An additional virtual object/interface (the
“ConnectionManager”) is needed to support
dynamic addition and deletion of clients during
router operations.

 Router Configurations/Specifics, This Work

The numerical experiments described in this
work explore two different overall
communications topologies built from basic
Mesh Router objects: the "Tree" and "Mesh"
topologies shown in Figure 10.

Figure 10:Basic Topologies Available using
the Mesh Routers.

In the Tree topology, there is an entire CPU
allocated to each router. All connections
(simulator to Router or Router to Router) use the
full RtisPipe instance. The persistent router
clients in the sense of Section II are the upper
router clients (if any) for each component router.
All other communications links are generated
dynamically.

For the Mesh Topology simulations, all three
routers within the basic triad of Figure 4 are
instanced as distinct Router objects on a single

80

Inersvice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

CPU, with MemoryPipe connections are used for
the Primary � PopUp and Primary � PullDown
links within a single triad. All other links in
Figure 10 use the RtisPipe, with the cross-triad
PullDown � Primary links persistent.

As noted, the current RtisPipe implementation is
based entirely on objects and method calls within
the current RTI-s library. This is important for
demonstrating "ease of insertion" of the Mesh
Router formalism into the RTI-s libraries, but it
does result in a few minor inefficiencies. These
include one extra memory copy per message and
duplicate "interpretations" of incoming interest
declaration messages. These inefficiencies can
be removed in future, more finely tuned Pipe
instances. Indeed, the careful communications
factorization within the Mesh Router package
supports mixed Pipe instances tailored to
communications specifics for any of the
individual links in Figure 10. In particular, the
optimal Pipe instances for WAN and LAN links
may be quite different. Though supported by the
overall design, these refinements are beyond the
scope of this particular paper.

Results

The Koa cluster at the Maui High Performance
Computing Center was utilized for testing the
Mesh Routers. Koa is a 128 node Linux cluster
with two 3.06 GHz Intel Xeon processors and 4
gigabytes of memory per node. Nodes are
interconnected via gigabit Ethernet. All routing
topologies were generated using the standards
for the JUO experiment: 5 federates per router
and 4 routers per router (the second only
applicable to tree routers). The default
configuration parameters were used for both
RTI-s and the Mesh Router. Since the Mesh
Router utilizes the RTI-s communication
infrastructure, we believe that any parameter
tuning done to one system would apply equally
well to the other system. To highlight the
importance of topology in routing infrastructure,
we show the Mesh Routers running in a tree
configuration in addition to the standard RTI-s
tree.
A number of tests ensured the Mesh Routers
performed as required for JSAF experiments.
The mesh infrastructure was used for an
extended simulation using the JSAF suite. As
expected for a small-scale simulation, the Mesh
Router and RTI-s tree router were
indistinguishable to the JSAF operator.

Latency measurements were taken on the Koa
cluster. The Mesh Router performed slightly
better in mesh configuration than in either tree
configuration, but were within the measured
error. Koa’s low latency network combined with
a short tree (only 3 levels deep) account for this
measurement.

System Throughput

For testing the maximum throughput of the
routing infrastructures, pair-wise communication
was used. Attribute updates were sent between
process pairs as fast as possible, with loose
synchronization to ensure multiple pairs were
always communicating. The average per-pair
throughput, specified in number of
reflectAttributeValues()calls per second for a
given message size, is shown in Figure 11. For
the test, 50 pairs were utilized, with 28 tree
routers or 20 mesh routers creating the router
infrastructure.

1 10 100 1000 10000 100000 1000000 10000000

Message size (Bytes)

Figure 11: Realizable point-to-point
bandwidth full communications load

As expected, Figure 11 shows that the maximum
number of updates per second goes down as
message size increases. The mesh router in a
mesh configuration is able to move more traffic,
and thereby cause more updates than either the
RTI-s tree infrastructure or the Mesh Routers
mapped into a tree topology. The RTI-s and
Mesh Router tree configurations both would
slow down at the root node of the tree, causing
both lower realized aggregate bandwidth and an
increase in dropped messages as message queues
increased in length.

The RTI-s tree router performed much better
than the Mesh Router in a tree configuration.
This is not unexpected, as RTI-s has been finely

81

cameras
Text Box

tuned to reduce memory copying and contention.
The Mesh Router lower level has only started to
be tuned for optimal performance on a Linux
system. We see no implementation detail that

would prevent the Mesh Router from matching
the performance of the RTI-s routers and believe
that further tuning will increase the performance
of the Mesh Router in any configuration.

Future Work

The mesh routers currently provide a scalable
solution for message routing in an RTI-s based
federation. Future work will focus on fault
tolerance, performance tuning, and investigation
of supporting a fully compliant RTI
implementation.

We have taken care to design a system that
should allow plug-in adaptation to any RTI with
a point-to-point communication infrastructure.
Provided the client bounding assumptions are
followed, the scalability shown for RTI-s should
also apply to other RTI implementations. It is
important to note, however, that a federation
relying on timestamp message ordering will not
see increased scalability with the Mesh Router
architecture. . Timestamp ordering requires all-
to-all communication, placing enormous stress
on the communication fabric. Previous
experiments have shown abysmal scalability
(Fujimoto, 1998) and the authors see no reason
to expect any improvement using a mesh
topology.

As the size of a simulation increases, the chance
of failure in the network or hardware increases.
With the ever-increasing size of simulations, the
ability of the routing infrastructure to handle
failures is becoming critical. The routers handle
very little state, so the data loss when a router
fails is not critical. However, until the router is
restored, messages will not be delivered
properly. If the lost router is the connection point
for a site, a large portion of the simulation is
suddenly not available. One potential solution is
to allow loops in the mesh topology. This
provides N + 1 redundancy for the connections,
as there can be multiple paths between sites. If
one path fails, the system will adjust and use the
other available paths. The long-term solution is
to provide an adaptive, dynamically configuring
topology that adjusts to failures and new
resources. The basic Mesh Router objects could
accommodate these generalizations.

There are some not-uncommon communication
patterns for which the fully connected mesh is
not well suited. One such pattern is a broadcast,
which requires the router triad for the sending

federate to contact every other router in its mesh.
The solution is to use a hypercube or similar
topology, which provides scalable broadcast
capabilities while maintaining bisectional
bandwidth. The work required to develop such a
topology should be minimal, with most of the
effort spent on reducing the work required to
specify the topology.

Conclusion

The mesh router infrastructure presents a
scalable routing infrastructure for both local and
wide area communication. The routers are
capable of being organized into a number of
topologies, and should be easily extensible into
new routing topologies. For wide area networks,
the flexible routing topologies allow
communication over all available network links,
without the hub and spoke problem of the
treerouters. Within a local area network, the
mesh routers provide a scalable communication
architecture capable of supporting hundreds of
federates.

Acknowledgements

We would like to thank the Open Systems
Laboratory at Indiana University, Aeronautical
Systems Center Major Shared Resource Center,
and the Maui High Performance Computing
Center for the use of computer resources for
performance measurement. We would also like
to thank Bill Helfenstein for advice on
integrating the mesh router code with the RTI-s
code base. This material is based on research
sponsored by the Air Force Research Laboratory
under agreement number F30602-02-C-0213.
The U.S. Government is authorized to reproduce
and distribute reprints for Governmental
purposes, notwithstanding any copyright
notation thereon.

82

REFERENCES

Brunett, S., Davis, D., Gottschalk, T., Messina,

P., & Kesselman, C. Implementing
Distributed Synthetic Forces Simulations in
Metacomputing Environments. In
Proceedings of the Heterogeneous
Computing Workshop, pages 29 – 42. IEEE
Computer Society Press, 1998.

Brunett, S. & Gottschalk, T., A Large-scale
Metacomputing Framework for the
ModSAF Real-time Simulation, Parallel
Computing 24, 1998.

Calder, R. B., Smith, J. E., Courtemanche, A. J.,
Mar, J. M. F., Ceranowicz, A. Z. ModSAF
behavior simulation and control. In
Proceedings of the Third Conference on
Computer Generated Forces and Behavioral
Representation. Orlando, Florida: Institute
for Simulation and Training, University of
Central Florida, March, 1993.

Ceranowicz, A., Torpey, M., Hellfinstine, W.,

Evans, J. & Hines, J., (2002), Reflections on
Building the Joint Experimental Federation,
Proceedings of the 2002 I/ITSEC
Conference, Orlando, Florida.

Dahmann, J., Olszewski, J., Briggs, R., &
Weatherly, R. High Level Architecture
(HLA) Performance Framework. Fall 1997
Simulation Interoperability Workshop,
Orlando, FL, 1997.

Fujimoto, R. & Hoare, P., HLA RTI

Performance in High Speed LAN
Environments. Fall Simulation
Interoperability Workshop, September,
1998.

Lucas, R. & Davis, D., Joint Experimentation on
Scalable Parallel Processors. In
Interservice/Industry Training, Simulation,
and Education Conference, 2003.

MPI Forum. MPI: A Message Passing Interface.

In Proceedings of 1993 Supercomputing
Conference, Portland, Washington,
November 1993.

Defense Modeling and Simulation Office. High

Level Architecture Interface Specification,
v1.3, 1998.

Rak, S., Salisbury, M., & MacDonald, R.,

HLA/RTI Data Distribution Management in
the Synthetic Theater of War, Proceedings
of the Fall 1997 DIS Workshop on
Simulation Standards, 1997.

83

Successful Joint Experimentation Starts at the Data Collection Trail—Part II
Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao

M&S Team, Experimentation Engineering Department, J9 USJFCOM
Suffolk, Virginia

rgraeben@ida.org, grafuse@alionscience.com, rmiller@alionscience.com & kyao@isi.edu

ABSTRACT

Last year Joint Forces Command’s, Joint Experimentation Directorate (J9) initiated planning and development in
technical support of the most complex experiment (URBAN RESOLVE) undertaken to date. The experiment trials
(Summer 2004) will explore future concepts and technologies for achieving situational awareness and understanding
when operating in a robust large-city urban environment. In addition, the need for generating quantifiable results
took on a renewed level of interest. The Commander, Joint Forces Command directed that future experiments
provide findings that can survive critical scrutiny, particularly if those transformational products and solutions are to
be promulgated across the Department. The authors’ add another chapter to last year’s paper, as they craft a system
for providing more creditable and quantifiable data to support experiment findings. This paper will cover: changes
made in the initial plan for data collection and analysis as new challenges arose along the way; the technical issues
related to the architectural choices; as well as the challenges awaiting the group of individuals charged with
maintaining a nationwide, distributed federation and network whose ultimate goal is to provide cogent, traceable
data generated from the federation and human-in-the-loop player inputs. In preparing for the experiment trials, initial
data storage assumptions gave way to the realities of finding more robust methods of collection as bandwidth traffic
increased as federation architectures were modified to support emerging user requirements. Innovative approaches
on how near-real-time data would be collected were instantiated as attention turned towards the post-processing
needs that would sustain the experiment analysis team in the months following the trials. Integrating scalable
parallel processors and addressing issues dealing with the means for storing and retrieving extremely large quantities
of data added to the challenges. Finally, major lessons learned will be addressed from a transformational
perspective.

ABOUT THE AUTHORS

Bob Graebener, Colonel, United States Army (Retired), has been a member of the professional staff at the Institute
for Defense Analyses (IDA) since March 1997. He is currently a Research Staff Member at IDA and has primarily
involved in supporting JFCOM J7/J9 in Modeling and Simulation related matters for the past nine years. He is
currently working towards a doctoral degree in Systems Engineering from GWU.

Gregory Rafuse is a data collection analyst and developer and is currently the lead developer for the data collection
toolkit. He is a Software Engineer with Alion Science and Technology. Mr. Rafuse has previously served seven
years with the US Army as a Field Artillery Crewman. He also possesses an AAS in Computer Information
Systems (CIS) from McLennan Community College and is pursuing a BS in CIS from Strayer University.

Robert Miller is a Senior Software Engineer with Alion Science and Technology. He brings over 11 years of
experience to the current effort of designing, coding, and testing software for the Future After Action Review
System. He holds a Bachelors Degree in Engineering from The Cooper Union School of Engineering and a Masters
Degree in Computer Science from the City University of New York.

Ke-Thia Yao is a research scientist in the Distributed Scalable Systems Division of the University of Southern
California Information Sciences Institute. Currently, he is working on the JESPP project, which has the goal of
supporting very large-scale distributed military simulation involving millions of entities. Within the JESPP project
he is developing a suite of monitoring/logging/analysis tools to help users better understand the computational and
behavioral properties of large-scale simulations. He received his B.S. degree in EECS from UC Berkeley, and his
M.S. and Ph.D. degrees in Computer Science from Rutgers University. For his Ph.D. thesis he implemented a spatial
and physical reasoning system that automatically generated grids for novel geometries for computational fluid
dynamics simulators.

 84

cameras
Text Box
Appendix H

Interservice/Industry Simulation, and Education Conference (I/ITSEC) 2004

Successful Joint Experimentation Starts at the Data Collection Trail—Part II
Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao

M&S Team, Experimentation Engineering Department, J9 USJFCOM
Suffolk, Virginia

rgraeben@ida.org, grafuse@alionscience.com, rmiller@alionscience.com & kyao@isi.edu

PRELUDE

The reader should be aware that the title of this paper
ends with “—Part II”. Those familiar with human-in-
the-loop simulations like JSAF (Joint Semi-Automated
Forces) and joint experiments set in the year 2018,
such as URBAN RESOLVE, realize that when one
pushes the boundaries of simulation-support-to-
experimentation a discovery process, in its own right,
is created as the bounds of “what can be done in
simulation” is continually challenged and superseded.
Over the course of the past year, what started as a
concept for developing “a best approach for collecting
and analyzing data” gave way to the practical
experience gained through the number of integration
events necessary to prepare for the formal trials. The
authors’ felt it necessary to add another chapter to last
year’s journey (Graebener, et. al., 2003).1

INTRODUCTION

The initial concept of how to approach data collection
and analysis when faced with a simulation federation
that could generate data records in the terabyte range
has evolved over the past year. Whereas PART I laid
out the challenges associated with extremely large data
generation conditions and the initial approach for
meeting the experiment data collection requirements,
and significant detail of the major changes will
follow.2

This paper will cover:

• Changes made in the initial plan for data collection

and analysis as new challenges arose along the
way, as well as technical issues related to the
architectural choices;

• Subsequent modifications in the data analysis tools
to meet the changing user requirements,

1 Last year’s paper will be referred to as PART I for the
remainder of this paper.
2 The authors recommend a review of last year’s paper
to serve as a point of departure. Go to:
http://www.alionscience.com/pdf/Data_Collection.pdf

• Challenges awaiting the group of individuals
charged with maintaining a nationwide distributed
federation and network whose ultimate goal is to
provide cogent, traceable data generated from the
federation and human-in-the-loop player inputs.

• Finally, lessons learned will be addressed from a
transformational perspective.

In preparing for this year’s experiment trials, initial
data storage assumptions gave way to the realities of
finding more robust methods of collection when
network traffic increased as federation architectures
were modified to support changing/emerging user
requirements. Innovative approaches on how near-real-
time data would be collected were instantiated as
attention turned towards the post-processing needs that
would sustain the experiment analysis team in the
months following the trials. Integrating scalable
parallel processors and addressing issues dealing with
the means for storing and retrieving extremely large
quantities of data added to the challenges. (Table 1)

Table 1. Data Collected During Dress Rehearsal Week.

of Data Records
of Interest (stored

in 576 tables)

Percent of Total
Data Logged

Size of
Database

264 million 15-20 45 GB
Average size of each record: 180 bytes

BACKGROUND

The original concept behind the FAARS (Future After
Action Review System) toolkit was based on utilizing
commercial-off-the-shelf (COTS) products for
collecting simulation data. The original design
specifications for the FAARS toolkit comprises three
separate modules; a Data Collection Module utilizing
hlaResults as the federation data interceptor and
storage transport, a Near Real Time Module utilizing
MySQL as the data storage medium along with a
Apache web server with PHP scripts as the data
presentation and analysis medium, and a Post Event
Analysis Module using MySQL as the data storage
medium and a custom written C++ user interface for
accessing stored data for processing and analyses.
Although this design works well and is being used in
several joint experiments, it was not robust enough to
support the URBAN RESOLVE series. Initial testing

 85

http://www.alionscience.com/pdf/Data_Collection.pdf
cameras
Text Box

results using the complex urban terrain and tens of
thousands of entities being detected by a large
constellation of sensors were adequately handled using
Scalable Parallel Processor clusters, however the
methodology of using hlaResults as the data collector
no longer met the requirements. The reasons for
replacing hlaResults were:

1) hlaResults only works with an NG-style RTI. For
the UR effort, we are using an s-style RTI, which is a
different implementation loosely based on DMSOs
RTI-NG v1.3 standard.

2) When hlaResults subscribes to ALL entity traffic
this overwhelms the physical network interface and
causes packets to be dropped at the physical interface,
effectively “missing” information.

3) Due to the nature of how cluster computers function,
a significant amount of the simulation event
information could not be effectively be logged.3 Based
on these factors, a different data logging architecture
was needed.

INTERCEPTOR/LOGGER

The Interceptor/Logger application, an early version
described in PART I, is an application process that
resides on individual simulation nodes within the
federation.4 The determining factor on where to utilize
the mechanism is determined by which federates are
publishing information needed for data collection. The
interceptor/logger, utilizing functionality in the RTI
Application Programming Interface, inserts “hooks”
into the published data streams by the RTI and then
splits off two child processes; one process that writes
and compresses the intercepted data into binary “log”
files and a second process that decodes the data stream
and inserts the decoded data into an embedded
database application called SQLite. A separate
daemon process called “sqlited” handles incoming
socket-based connection attempts to query information
that has been stored in the local database. Figure 1 is a
diagram of the process.

3 The data could not be intercepted and logged by the
hlaResults product because a significant amount of
simulation traffic would be exchanged between SPP
cluster nodes running the simulation and not
transmitted outside of the cluster, a necessary
prerequisite for hlaResults.

4 Developed by the Information Sciences Institute (ISI)
at the University of Southern California,

Figure 1. Interceptor/Logger Process

Because of the methodology of running
interceptor/loggers on each simulator with data of
interest, a separate mechanism was needed to retrieve
information stored at each simulator location. A
separate application process called “Aggregator” was
developed that would handle the intercommunication
between simulators logging data. The Aggregator is
configured in a tree-like fashion, with a “Root
Aggregator” at the head of the tree and “Child
Aggregators” in branches from the root. The various
branches reach out to the individual leaf instances of
“sqlited” on each simulator. The interface to the Root
Aggregator takes a Structured Query Language-
formatted query and passes the query on to each branch
Child Aggregators until the query finally reaches the
individual instances of “sqlited”. As each instance of
“sqlited” responds with the requested data for the
query, the Child Aggregators assemble the returned
information in order of response and forwards the data
on to the Root Aggregator which then assembles the
complete returned information and forward it on to the
original requestor. The Aggregator model works on
Transmission Control Protocol (TCP) socket-based
connections between the Root Aggregator and
subsequent Children Aggregators.

Near Real Time Retrieval Of Data

With the utilization of the ISI interceptor/logger, the
possibility of retrieving simulation information in a
“near real time” manner became a reality. Typically,
data collection efforts have had to wait until after
collected logger files have been processed before any
specific event information could be derived. This is a
vast improvement in functionality and provides a wide
range of uses that are still being realized as we move
forward in the software development effort.

The Near Real Time data retrieval effort is based
around the ability to query the ISI interceptor/logger
application, retrieve the logged information from each
node and store the retrieved information into a local

86

Relational Database Management System (RDBMS).
The retrieved information is then used by the FAARS
Near Real Time web server interface to allow users of
the system to view various reports, charts and graphs
based on the available information.

The process of retrieving intercepted information from
each of the active ISI interceptor/loggers is handled by
a series of BASH shell scripts on the FAARS web
server. Each BASH shell script is targeted towards
retrieving specific information, such as entity object
states, and is used to process the retrieved information
into the local RDBMS (aka cache). The data retrieval
process is based on three steps. The first step is to send
the request for information to the Root Aggregator. The
methodology used by the retrieval process is based on
making a TCP socket-based connection to the Root
Aggregator and sending an SQL-formatted query. The
second step is to wait for a response and
process/validate the retrieved data and write this data to
a temporary file. The expected response back from the
Root Aggregator is a stream of plain ASCII text, which
is tab-delimited for fields and is carriage return
delimited for individual records. This information is
then written to a temporary file in this same tab-
delimited/carriage return delimited format. The third
and final step is to then load the temporary file's data
into the local cache.

The FAARS web server RDBMS cache uses MySQL
v4.1.1. as the database engine. The database schema
for the cache is based primarily on the schema used by
the ISI interceptor/logger. This helps in facilitating
compatibility with the information that is being utilized
in near real time and data being reviewed post event.
The main difference between near real time and post
event processing is the different indexing schemas
utilized on the local cache. The indices applied to the
local cache database have been specifically tuned to
support the types of queries that the FAARS web
server uses for data displays.

Storage Space Requirements

When the overall design of the FAARS toolkit began to
change to utilize the ISI interceptor/logger, physical
storage space for collected data files and consolidated
database became an issue. With the switch to using a
larger-scale database engine than previously used and
the need to analyze larger amounts of data than
previously anticipated, the need for more physical
media space became apparent. Where it was once
thought that ten's of Gigabytes (GB) of storage space
would be sufficient, it soon became apparent that this
was not going to be acceptable. The central
importance of disk space is its centrality to all three

aspects of the process: storage of compressed logger
files, storage space for staging uncompressed logger
files while loading into consolidated database, and
space needed for the final database tables and indices.
What was finally settled on was a RAID 5 disk array
totaling 1.7 Terabytes (TB) of disk space with a stand
by disk array of 1.3 TB in size.

Because of the distributed nature of logging data that
has begun to be utilized, it has become necessary to
develop means to: retrieve all of the saved binary data
logs on each simulator where the ISI interceptor/logger
was instantiated; prepare and decode the binary data
files, and then; insert the decoded data into a
consolidated database representing the complete
accumulation of data for a particular event. A process
called “Data Staging” has been developed that
accomplishes these tasks in an organized, efficient
manner, making the best usage of available bandwidth,
processing cycles and disk space. (See Figure 2) The
Data Staging process begins with retrieving the binary
log files at the end of each day’s simulation run from
each simulator logging data. The data is moved and
stored on the local storage point in a hierarchical
format based on the event name, day of the event and
the simulator where the log file was retrieved. Once
the data has been moved, Perl-based scripts are run
against the individual binary log file to decode and
format the binary data into plain-text, comma-separated
value (CSV) flat files. The translation of the data and
the creation of the storage database schema are based
on utilizing definitions found in the Federation Object
Model (FOM) and Federation Execution Document
(FED) for the federation in use. Each CSV-formatted
file represents a section of data to be inserted into the
consolidated database for the event. A final Perl-based
script takes the CSV-format files and inserts the
decoded data into the appropriate table within the
consolidated database.

Figure 2. Data Staging Process

Database Engine Configuration Issues

Previously, the MySQL v4.0.18 RDBMS was selected
for storing the decoded logger data for Post Event
analysis operations. As a database engine, MySQL is

 87

Intrvce/Industry Simulation, and Education Conference (I/ITSEC) 2004

both an open-source and a commercial product line
with a significant amount of engine performance tuning
available for the end user to adjust based on specific
needs. Through trial and observation, several
adjustments to the database engine were decided on
that would afford us the best performance for both the
loading and the retrieval of data.

Database Table Configuration Issues
The MySQL database server engine supports several
different table types, the default being MyISAM but
provides support for BerkeleyDB, InnoDB, MERGE
and MEMORY table types. It was decided to stick
with the default type of MyISAM mainly for the fact
that once data is loaded into a table, the data in the
table becomes static and read only. Both BerkeleyDB
and InnoDB table types are transaction safe, which for
our purposes are not necessary.

One of the primary concerns for the table definitions
revolved around the number of rows the tables will
contain. During initial testing, it was discovered that
the default number of rows that a MyISAM table could
hold was less than the number of rows to be loaded.
The overall data size for the table is determined by the
types of fields used for the table and the data size for
each type. Examples of this would be an INTEGER
field type, which can have a data size up to 4 bytes and
VARCHAR field type, which can have a data size up
to the length of the text value + 1 byte. For the
purposes of this experiment, there are three table
settings that had to be set in order for the tables to scale
to the number of rows anticipated. By adjusting the
AVG_ROW_LENGTH, MAX_ROWS and
ROW_FORMAT variables for MyISAM tables, it was
possible to adjust the number of rows of data that the
table can have. The ROW_FORMAT variable defines
how the table rows should be stored. The option value
can be FIXED or DYNAMIC for static or variable
length row formats. When a table is defined that does
not have BLOB or TEXT type columns, you can force
the table format to FIXED or DYNAMIC with the
ROW_FORMAT table option. This causes CHAR and
VARCHAR columns to become CHAR for FIXED
format or VARCHAR for DYNAMIC format. The
AVG_ROW_LENGTH variable defines an
approximation of the average row length for a table.
This should be set only for large tables with variable
size records. With a MyISAM table type, MySQL uses
the product of MAX_ROWS times AVG_ROW_
LENGTH to decide how big the resulting table will be.
If neither of these variables is specified, the default
maximum size for a table will be 4GB. Overall,
adjusting these variables are an absolute must to
support the number of rows of data that have been

observed for both the Near Real Time cache database
and the Post Event consolidated database.

Because of the number of rows of data being stored
into tables, it is imperative that efficient indexing be
applied based on a thorough analysis of how data is
extracted from the databases.

All columns used are not necessarily indexed, but only
the columns that would enhance a typical query. As an
example, within most tables there are VARCHAR
fields that hold RTI-determined object name values.
The object name in question, for the most part,
uniquely identifies a specific entity within the
simulation. Any column in a table that contains this
type of data has an index applied to it because most of
the queries posed utilize this column type as part of the
qualifier of an SQL statement. Other indices are
applied on a table-by-table basis within both the Near
Real Time cache and Post Event databases geared
towards their unique needs, but painstaking research
went into selecting the most efficient usage of indices
as part of each database schema creation effort.

NEAR REAL TIME PROCESSING

An example of one of the tools used for near-real-time
analysis is the Track Matrix. The track matrix table
provides a tabular snapshot of the current (based on the
last 30-35 minutes of simulation time before the query
is submitted) number of tracks associated with each
type of entity. The row labels of this table are the
actual truth types of entities being tracked at the current
time. The column labels represent the perception of
the entities being tracked. The column headings are
exactly the same as the row headings because the set of
possible perceptions is the same as the set of possible
track types; Perceptions are determined by the
SLAMEM simulation federate's sensor fusion center
utilizing algorithms based on Bayes Rule. The resulting
target type with the highest probability is the type
associated with the track. The table entry in a given
row and column is the number of tracks belonging to
the corresponding row type that are perceived to be the
given column type. A column labeled 'Ambiguous'
indicates that those tracks are not resolvable. This
means that the sensor fusion process determined that
two or more target types were equally probable as the
type of target being tracked.

Subsequent details associated with the Track Matrix
are a series of additional tables and graphs segregating
tracks into their ages, which is defined as the length of
time between when the track was created and the last
time it was updated. By segregating tracks by their

 88

cameras
Text Box

age, it is possible to get a sense on how well sensors
and, in some cases players, are aware of the entities
being played within the simulation. Older tracks can
be perceived as having a higher probability of positive
identification as opposed to tracks that persist for a
shorter amount of time.

POST EVENT PROCESSING

In accordance with numerous authorities, the highest-
level decomposition of the Post Event Processing
system was into a single control class, entity classes,
and an interface class (inasmuch as the interface class
was a straightforward application of Microsoft
Foundation Class (MFC), it will not be discussed).
There are three general entity classes, called Database,
Processor, and Final_Results. These roughly
correspond to a traditional functional breakdown into
input, transformation, and output. To promote the
greatest possible generality, interactions between the
Database class and the other classes were performed
using Open DataBase Connectivity (ODBC). The
Final_Results class encapsulates Microsoft Excel or a
commercial graphical package called ChartDirector.
Communications to and from that class uses either
Microsoft’s OLE Automation or ChartDirector’s API.
The Processor class, as well as most of the
infrastructure of the system, was written using C++.

The post processing system comprises eight overall
functional areas, all invoked by the user. These
functions are as follows:

1. A Killer/Victim (K/V) Scoreboard,
2. A Killer/Victim details display,
3. An Entity Life Cycle summary screen,
4. An Entity Details Display,
5. A Sensor/Target (S/T) Scoreboard,
6. A Sensor/Target details display,
7. A Track Perception Matrix, and
8. A timeline (String) depiction that displays,

graphically, the events in the lifecycle of any
specific entity.

K/V Scoreboard
As currently coded, the K/V Scoreboard is produced by
querying for the number and enumerations of all killers
and victims are obtained via simple SQL queries. For
each possible combination of killer and victim, the
Damage Assessment interaction is queried to obtain the
relevant victim’s state. This is recorded, along with the
entity causing the damage. Summations are performed
by type (as indicated by enumeration values). The final
results are presented in the form of an Excel
spreadsheet or comma-separated value flat file.

K/V Details Display
To obtain the details of any Killer/Victim interaction,
the user is first presented with a screen enabling him to
choose a particular killer and victim. Queries are
performed against a lookup table to transform these
English names into enumerations. An SQL statement
is then constructed and executed that extracts the
relevant fields from the Damage Assessment
interaction.

Entity Life Cycle
The Entity life cycle summary output is derived largely
from the entity state objects. All the entities used in
the execution are gathered together into a vector. For
each entity thus obtained, its entity state object is
queried to obtain the fields necessary to compute its
final state. This state is then determined and added to a
running total.

Entity Details Display
Entity life cycle details are obtained from numerous
objects. The user first chooses an entity via a series of
drop-downs. To obtain the entity’s state changes, its
entity state objects are scanned for all records
indicating a change of state, whose details are then
recorded. The appropriate objects are then queried to
ascertain the entity’s creation and deletion details; data
on sensor hits and weapon fire events, and detonations
occurring on or near the entity.

S/T Scoreboard
The Sensor/Target Scoreboard summary output is
similar in structure and layout to the Killer/Victim
Scoreboard with the exception of the data obtained for
the matrix display. For each possible combination of
sensor platform and detected target, the Contact Report
interaction is queried to obtain the relevant information
concerning the detected target and the functional mode
the sensor used to interrogate the target. Summations
are performed by sensor platform and by sensor mode
(as indicated by enumeration values) with the final
results being presented in the form of an Excel
spreadsheet or comma-separated value flat file.

S/T Details Display
To obtain the details of any Sensor/Target interaction,
the user is first presented with a screen enabling him to
choose a particular sensor platform and detected target.
Queries are performed against a lookup table to
transform these English names into enumerations. An
SQL statement is then constructed and executed that
extracts the relevant fields from the Contact Report
interaction.

89

Interserce/Industry Simulation, and Education Conference (I/ITSEC) 2004

Figure 3. Track Perception Matrix

Track Perception Matrix
The Track Perception Matrix summary output is
designed to show information concerning simulation
Tracks and how they are being perceived by the sensor
model being used by the federation. For each possible
combination of true entity types (truth guise) and
perceived entity types (perceived guise), the Track and
Track_probabilities interactions are queried to obtain
the relevant information used to generate the display.
The display consists of column headings representing
the perceived guise possibilities, row headings
representing the truth guise possibilities, and a diagonal
across the table which represents where the truth guise
and perceived guise intersect. See Figure 3 for an
example section from a Track Matrix. The row and
column heading extents are determined in advance by
aggregating entity types together via a lookup table.
The information displayed is then available for export
to either an Excel spreadsheet or comma-separated
value flat file.

String Chart
The String chart requires much of the same data as
contained in the Entity Life Cycle details screen, and
therefore uses the similar algorithms to gather data.
However, instead of sending the results to an Excel
spreadsheet, the data is fed to a commercial graphing
product (ChartDirector). This product produces a
timeline whereby events are depicted as color-coded
icons. Placement of the icons at different y-axis values
depicts the different events. These are placed in proper
time order, with the x-axis showing wall clock time.

The String chart allows the user the choice of
displaying the requested information in three possible
ways with the data segregated into four sections:

• Entity Event,
• Blue Activities,
• Track Events, and
• Sensor/Target Events.

The Track Events and Sensor/Target Events sections
are also segregated to show all instances of individual
track numbers and sensor name/mode combinations or
actual target type and bumper number. Each section or
subsection is then sorted by time.

The Entity event section graphically depicts all changes
that are derivable from an examination of objects
received via the High Level Architecture (HLA)
federation. These include entity creation, entry into
damage states (firepower, mobility, firepower and
mobility, or total destruction), moves and stops, and
entry into or exit from camouflage. This section also
records instances of the entity firing its weapon,
receiving incoming fire, being deleted, or being
recreated after a deletion.

The Sensor/Target section can depict two types of
information. If the entity in question is being sensed, it
will contain a comprehensive display of all the sensors
that “saw” the entity, the sensor’s mode, the highest

90

cameras
Text Box

Intersece/Industry Simulation, and Education Conference (I/ITSEC) 2004

acquisition, the highest correct perception, the
perceived type, and the time of detection. If the entity
was within the footprint of the sensor but was not
detected, a brief explanation of why is given.

If the entity in question is itself a sensor, the chart
displays a listing of all entities that were detected, their
actual type and bumper number, the highest
acquisition, the highest correct perception, the
perceived type, the sensor mode employed, and the
time of detection. As before, if the entity was within
the footprint of the sensor but was not detected, a brief
explanation of why is given.

The track events sections show all tracks associated
with the entity. For each track, a listing of the top three
most probable entity types is given, along with the
computed probability of the entity being of that type
and the number of sensor hits used to determine it.

The blue activities section is reserved for human
actions, such as planning a mission, assigning it a
priority, initiating an attack or mission abort,
requesting a bomb damage assessment, etc. All such
user actions are sorted by time.

In addition to the pictorial generated by ChartDirector,
a file containing the corresponding raw data (in either
CSV flat file form or as an Access database) is also
generated to allow the analyst to examine the
information used to generate the picture directly.

CHALLENGES

General Gordon Sullivan (Chief of Staff of the United
States Army, 1991-95) once said, “You don’t know
what you don’t know,” a statement that accurately
describes today’s challenges in mining extremely large
databases.

Some of the challenges under initial assessment by the
FAARS team:

• Policies and procedures for allowing interested

government agencies access to the data generated
by the URBAN RESOLVE experiment.

o The data storage server is connected to the

DREN. What is the best approach for
allowing others on-line access while
minimizing the impact on the UR data
collection and analysis effort?

o Will the answer be purely policy driven or
can software and hardware solutions enable

the simultaneous utilization of the
database?

• Less than twenty percent of the collected data is of

primary importance to the data analysts, at present.

o What impact will occur when the remaining
eighty percent of the data is transformed
through the data staging process and
available on the terabyte storage device?

o Will new techniques be required?

CONCLUSION

The discovery process is not solely a characteristic of
the joint experiment, but touches many aspects
associated with the experimentation effort. As Joint
Forces Command and the Joint Advanced Warfighting
Program at IDA demand more from the simulation
community the ripple affect moves throughout the
various federates providing support.

In this specific case, the data collection and analysis
effort has met the near term challenges brought about
by an experiment scenario that requires over one-
hundred-thousand entities; 1.8 million buildings and
man-made urban structures to set the stage for
achieving situational awareness in the 2018 timeframe.
Use of hundreds of scalable parallel processors each
logging the data generated during run-time was the
impetus for the FAARS effort.

New challenges that have arisen since PART I was
published will pale as we contemplate the challenges
that we face for the upcoming year’s trials. The good
news story is the FAARS team, in fact the whole M&S
team in J9, will continue to meet and overcome
whatever challenges arise, and who knows, there might
be another chapter awaiting.

ACKNOWLEDGEMENTS

This material is based in part on research sponsored by
the Air Force Research Laboratory under agreement
number F30602-02-C-0213. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes, notwithstanding any copyright
notation thereon.

REFERENCES

Dehncke, Rae W., Graebener, Robert J. 2004. Urban

Resolve: Joint Experimentation Raises the Bar for
M&S. Orlando: IITSEC 2004 Paper.

 91

cameras
Text Box

Interservice/Indstry Simulation, and Education Conference (I/ITSEC) 2004

Graebener, Robert J., Rafuse, Gregory, Miller, Robert,

and Ke-Thia Yao. 2003. The Road to Successful
Joint Experimentation Starts at the Data
Collection Trail. Orlando: IITSEC 2003 Paper.

 92

cameras
Text Box

An interdisciplinary approach to the study of battlefield simulation systems

John J. Tran
Information Sciences Institute

Marina del Rey, CA 90292
jtran@isi.edu

Jacqueline M. Curiel
Behavorial Cognition

Marina del Rey, CA 90295
jcuriel@behavorialcognition.org

Ke-Thia Yao
Information Sciences Institute

Marina del Rey, CA 90292
kyao@isi.edu

ABSTRACT

There are numerous advantages for conducting computer simulations that model wartime operations, which belie
the popularity in implementing them. Among them are: the ability to easily model the variables the researcher is
interested in, the ability to control the experimental scenario, and the ability to add or change variables as the need
arises. A simulation environment's success may be enhanced by considering questions not normally at the center of
simulation research. These include, but are not limited to, the following: to what extent does performance in the
simulation reflect performance during real life situations, to what extent does the learning that occurs during the
simulation transfer to real time situations, and is the cognitive processes that operate during simulations similar to
the ones that operate in real time situations? In considering the first question, experimental procedures may be used
to identify whether simulation performance reflects real life performance. In considering the second question, one
may note that research has shown that performance has been influenced by the learning context, which may or may
not influence the transfer of learning that occurs from the simulation to the real time situation. In considering the
third question, one must include attention, language processing, and memory, as well as problem solving strategies.

This paper will propose an interdisciplinary approach to the study of the wide spectrum of battlefield simulation
systems such as JSAF, STOW, and JESPP. It will show that the approaches and implementation of these systems
up until now have been grounded in the computer science discipline. We will explore what cognitive science has to
say about the simulation driven approaches. Integrating the viewpoint of fields such as cognitive science can
provide valuable insights as to the effectiveness of these approaches by substantiating the validity of the system and
increase the fidelity of the synthetic to real life experience.

ABOUT THE AUTHORS

John J. Tran is a researcher at the Information Sciences Institute, University of Southern California. He received
both his BS and MS Degrees in Computer Science and Engineering from the University of Notre Dame, where he
focused on Object-oriented software engineering, large-scale software system design and implementation, and high
performance parallel and scientific computing. He has worked at the Stanford Linear Accelerator Center, Safetopia,
and Intel. His current research centers on Linux cluster engineering, effective control of parallel programs, and
communications fabrics for large-scale computation.

Jacqueline M. Curiel is a researcher with Behavioral Cognition, where her work focuses on situation model theory.
Previously, she taught at the University of Texas at San Antonio where she conducted research on working memory.
She received her doctoral degree from the University of Notre Dame where her dissertation focused on the influence
of spatial and entity information on the repeated name penalty. Her master's thesis, also from the University of
Notre Dame, focused on spatial and temporal organization in mental maps.

Ke-Thia Yao is a research scientist in the Distributed Scalable Systems Division of the University of Southern
California Information Sciences Institute. Currently, he is working on the JESPP project, which has the goal of
supporting very large-scale distributed military simulation involving millions of entities. Within the JESPP project
he is developing a suite of monitoring/logging/analysis tools to help users better understand the computational and
behavioral properties of large-scale simulations. He received his B.S. degree in EECS from UC Berkeley, and his
M.S. and Ph.D. degrees in Computer Science from Rutgers University.

93

mailto:jtran@isi.edu
mailto:jcuriel@behavorialcognition.org
mailto:kyao@isi.edu
cameras
Text Box
Appendix I

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2004

An interdisciplinary approach to the study of battlefield simulation systems

John J. Tran
Information Sciences Institute

Marina del Rey, CA 90292
jtran@isi.edu

Jacqueline M. Curiel
Behavorial Cognition

Marina del Rey, CA 90295
jcuriel@behavorialcognition.org

Ke-Thia Yao
Information Sciences Institute

Marina del Rey, CA 90292
kyao@isi.edu

INTRODUCTION

Problem description

JSAF is a modern system for conducting synthetic
battlefield experiments. JSAF has adequately modeled
organic and inorganic entity behavior, (the physical
model) [Ceranowicz] but lacks adequate techniques for
measuring players’ internal behavior. However, taking
into consideration the player’s state of mind during the
analysis stage would increase the fidelity of the system.

JSAF uses a network of computers to model forces and
conflicts. JSAF includes entities, environmental
behavior, such as weather, and terrain. In its current
state, we have the tools and experience to model
physical behavior which answers the question: what is
going on with the system? One example of the tools is
the ability to conduct extensive logging of all
simulation states. We do not have the adequate tools to
answer what is the state of mind of the players. How
do they relate to their environment?

Meeting the above goals will help us understand and
validate the effectiveness of: (1) Doctrine and policy,
(2) Simulation tools and environment, and (3) Sensor
technology. In the next section we consider how the
methods of cognitive science may provide potential
tools to meet our goals with the specific focus on
situation awareness (SA).

Motivation

Cognitive science and applied cognitive science refer to
the umbrella disciplines that seek to understand both
how the mind works (cognitive science and applied
cognitive science), and how such knowledge can
provide useful applications (applied cognitive science).
These disciplines include, but are not limited to,
cognitive psychology, artificial intelligence, and
cognitive ergonomics. By taking into consideration the
capacities of what the mind can process, we hope to
develop methods and models that more accurately
assess and represent players’ performance.

To do so, we will rely primarily on cognitive
psychology and applied cognitive psychology because

they are pioneers among these disciplines in subject
matter and in the use of objective measures to infer
behavior, they provide experimental frameworks that
may be useful for testing theories, and they have
existing cognitive models that may be used for
comparison.

We are interested in the case of situation awareness
because SA researchers address the same issues we are
trying to address, namely what is the participant’s state
of mind and their relationship to the environment and
how is this relationship quantified? In addition, the
abstract definition of situation awareness does not favor
any particular field, although in practice much research
effort has been devoted to aviation, pilot, and
emergency crew SA. We are proposing to extend this
study to synthetic battlefield simulations in the context
of cognitive psychology by providing a:

1. Background for situation awareness and JSAF
simulation,

2. Taxonomy of situation awareness,
3. Draw upon cognitive methods to increase the

accuracy of situation awareness measurement
4. Accurate measurement of situation awareness

increases the ability to evaluate sensor
effectiveness

BACKGROUND

Background on JSAF

JSAF, a joint semi-automated force simulation system
that models battlefield environment, is federated [cite
Williams2003] and has many components working
together to create a synthetic battlefield and conflict
simulation environment. These components, together,
operate to model the JSAF system’s physical and
behavioral realism. The JSAF software serves as
modeling and simulation tool for training and doctrine
development purposes.

The most recent JSAF mission is the Joint Urban
Operation (JUO) exercise, and amongst its many
objectives are to (1) provide training and development
urban warfare tactics, and doctrine, and (2) unify data

 94

mailto:jtran@isi.edu
mailto:jcuriel@behavorialcognition.org
mailto:kyao@isi.edu
cameras
Text Box

logging, (3) perform sensor platform validation, and (4)
model and evaluate players’ internal state of mind.

Needs driven
impact

Development
Efforts

Logging
capability

Tactics and
doctrine
development &
needs for training

Earlier
development of
sims

Early stage with
minimal logging
facility

Add realism
Improvement to
the system

Model Behavior &
Sensors
Technology

Disjointed logging
facility

Higher fidelity Scalable system
(JESPP)

Unify Logging
more than needed

Situation
awareness

Analysis tools
Mental Models

Analysis of log

Table 1: Evolution of behavior modeling and
analysis in JSAF

Table 1 outlines a perspective on the progression of
JSAF development driven by the needs to have data
logging, complex tool development, and functional
requirements. The Joint Experiment Scalable Parallel
Processor (JESPP) and the Future After Action Result
System’s (FAARS) effort, leaded by a group at ISI and
TEC, focuses on the ability to collect for the first time
all simulation event data, and with this capability, the
JSAF team approach the ability to measure situation
awareness. Moving forward, understanding and
measuring situation awareness in JSAF requires a
cognitive perspective.

Background on Situation Awareness

Specifically area of intense research interest and
although several definitions for the term exists one that
is commonly accepted refers to SA as the perception
and comprehension of surrounding environment that
allows for a projection of the future states of affairs
[Endsley]. The term situation model, which is distinct
from mental model of how a system operates, has also
been used to refer to SA.

In military terms, SA is a static spatial awareness of
friendly and enemy troop positions [MHOB]. With
regards to JSAF, it is not to clear to researcher whether
or not JSAF has SA properties that correlate poor SA to
poor planning, and therefore deprive players of
comprehension and perception of simulation
environment.

In JSAF, any relevant discussion of SA must be framed
in the context of the concept of “cells” of which there
are three: red (hostile), blue (friendly), and white
(neutral omnipotent observer). Each cell is made up of

a group of players on the same side (with the same
military mission), and for red and blue cell, each of
which has some level of collective situation awareness
of the opposing force. In particular, the game-play
objectives of the JUO exercise are: (1) for the red force
to evade the blue force, and (2) for the blue force to
capture the red force.

[include picture of blue & red cells pvd]

The geographical dimension of the area of interest
(AOI) is enormous, and the blue players have access to
sensor information that tracks the red force’s activity.
The white players have the views of both the red and
the blue team, but serve as neutral observers and
evaluators. In light of the above information
machinery, the direct relationship between SA
assessment and sensor effectiveness is yet to be
determined.

THE CHALLENGE

Taxonomy of situation awareness

Domain Behavior Depth

There has been much work devoted to classifying SA
and the various segments of military and aviation
simulation. To this end, we focus on how an
alternative taxonomy of SA affects the use of cognitive
psychology methods for a better quantitative evaluation
of players’ internal state. Pew et al suggests the need
to have in depth domain of behavior classifications, and
breaks down as followed: (1) the organizational level
SA, which is guided by doctrine and policy, and (2) the
individual level SA, which is guided by tasks. He
added that common to both, the process for obtaining
information is based on psychology (Pew1997).

 Individual Group
Micro model F15 fighter pilot C130 Crew
Macro model JSAF red player JSAF red cell

Table 2: Taxonomy of the Domains of SA

2 P
95

cameras
Text Box

Figure XYZ: Example of Micro Model SA;
analogous to first person shoot ‘em gaming.

Figure XYZ: Example of Macro Model SA; this is a
screen capture of how the red players place their

Situational Objects on a PVD (game console).

We further expand on Pew’s classification with a two
dimensions: (1) along the first dimension, a distinction
is made between “micro” and “macro” model of SA,
and (2) along the second dimension, we retain Pew’s
distinction between individual and group SA levels.
Together, they form the four quadrants of SA
taxonomy. Table 2 illustrates some examples of the
quadrants of SA taxonomy.

Table 3 highlights a comparison of characteristics
between the micro and macro model. The intimacy
between the players and their environment sets the
distinction between the micro and macro model.
Additionally, the locality of awareness also points out
to another difference between the two models. The
following examples speak more to the specifics of this
classification.

Micro Model Macro Model

Fine grain relationship
between subject and
environment

Coarse grain relationship
between subject and
environment

Higher local awareness Lower local awareness
Lower global awareness Higher global awareness
Greater psycho-
physiological impact

Less psycho-physiological
impact

Table 3: Comparison of Characteristics of the

Domains of SA

Micro Model

The individual level SA of the micro model is defined
as task oriented SA of participant with minimal
communication flow, and the focus is on individual
cognitive processes. For example, a pilot in a cockpit
of an F15 fighter jet has an SA level that is only
relevant to his or her environment, namely, the
instruments, the weather, the altitude and enemy
positions and possibly tactics. In a similar sample
space, a group level SA of the micro model would be
the crew of a C130 airplane; and the active participants
communicate their collective SA.

In the above examples, the micro model SA at both the
individual and group level demonstrates the close
relationship between the participants and the entity (air
plane).

Macro model

For the macro model of SA, we note that both
individual and group level the participants exercise
control over more than one entity or scenario.

In JSAF, at the individual level, a player can control a
range of tasks. For example, a blue player can engage
in a mano-a-mano confrontation with a red player; and
in a different setting, a different player can
commandeer a battalion of tanks engaging in full-scale
combat.

At the group level (within a cell), the players can
collaborate their SA through the exchange of
information and together meeting a common mission
objective. This objective can be for example, a red
force eluding the blue force, and vice versa for the blue
force to capture the red force.

The proposed taxonomy is consistent with Endsley’s
view of situation awareness. It further organizes SA
roughly in terms of how many entities are controlled by

96

the player(s). Much research has been focused on the
micro model, e.g. aviation and flight simulators. The
above example places JSAF in a macro model SA
category, and calls on researchers to explore SA and its
impact on the meeting mission objectives.

Use of SA to evaluate the effectiveness of sensor
technology

Computer generated force simulations represent the real
world at the entity level. For example, entities can be
humans and vehicles, like aircrafts, ground vehicles and
surface vessels; Or, they can be embedded systems, like
IFF, radio transmitters and sensors. Or, they can even
represent the environment, like fog, precipitation and
cloud layers. These simulated entities interact with each
other by sending messages. They periodically emit state
messages reporting their internal state attributes, such
as their location, movement, damage state, camouflage
state, and so on. Also, they emit interaction messages
indicating what they did, for example, an aircraft can
send a weapon fire message, and a radio transmitter can
send a radio signal message. The entities are always
truthful in the messages, so the entire set of the state
and interaction messages during a simulation defines
the simulation ground truth.

Typically human simulation players do not directly see
the state and interaction messages of the opposing
forces, or even all the messages from their own force.
The players rely on simulated observer entities, such as

sensors and human intelligence, to provide them with a
perspective on the contents of the simulation. Using
this perspective the players develop their situation
awareness, see Figure 1. With respect to the simulation
ground truth, the players' perspective is partial,
approximate and delayed. The players do not have
enough wherewithals to deploy observers everywhere
and all the time. Even if observers were deployed, their
observations are not exact. For example, due to the
inaccuracies of the sensor technology (as simulated by
the observer sensor entity), an observer may misclassify
a heavy truck as a tank. Also, their observation message
sends to the players maybe delayed. This delay
sometimes is an artifact of the underlying computing
infrastructure, or sometimes it is inserted on purpose to
emulate actual time delays that are consistent with the
real world.

Currently, we are participating in the Joint Urban
Operations (JUO) Urban Resolve exercises. One of the
key objectives of the exercises is to determine in
complex urban battle environments the potential
effectiveness of proposed 2015 sensor technologies
[cite Dehncke's paper]. From the point of view of the
Blue force against the Red force, Figure 1 illustrates
three potential methods of evaluating the contribution
of sensors. One is to compare the Blue force

perspectives against the simulation ground truth; two is
to compare Blue SA against simulation ground truth;
and three is to compare the Blue players' situation
awareness against the White cell's situation awareness.

Si
m

ul
at

io
n

G
ro

un
d

Tr
ut

h

Blue's
Perspective
with Sensors

Blue's Actual
Situation Awareness

of Red

2. Using SA to
evaluate sensor
effectiveness

1. Evaluate
sensor technology

White's Actual
Situation Awareness

of Red

3. Using SA to
evaluate difference
cause by sensorsWhite's

Perspective
w/out Sensors

Figure XYZ: Evaluating sensor effectiveness using multiple situation awareness viewpoints.

97

In this case we define that the White cell forms its
situation awareness without using the proposed new
sensor technologies.

Evaluate Sensor Technology

Method one, perspective versus ground truth, provides
an absolute measure of usefulness of the sensor
technology. This method utilizes all available data
using all the messages from the underlying simulation
and all of the sensor data output. Comparing these two
types of data, we can determine exactly which entities
were detected, and which were not. Of the detected
entities we can determine which sensors did the
detection, for how long, and if the entities were
classified correctly. Of the undetected entities, we can
determine if the failure to detect was due to sensor
technology, or because no sensors were deployed near
the undetected entities. These types of measurements
are very useful in determining the usefulness of the
sensors and the sensor deployment patterns. Indeed
within JFCOM J9 we are developing a range of tools
using this method [cite Grabener paper]. Tools we are
developed include sensor-target and truth-perception
scoreboards. Sensor-target scoreboards indicate which
sensor types are more adept at recognizing which entity
types. Truth-perception scoreboards indicate the
frequency that tracked targets are classified correctly
and incorrectly. If targets are classified incorrectly, they
indicate the distribution of category types in which the
targets are misclassified.

Using SA to evaluate Sensor Effectiveness

Method two, Blue's SA versus ground truth, provides
measurements based on how effectively the sensor
information is being used. During the exercise the
players are typically overloaded with data and with
operational tasks that they must perform, such as
controlling the entities. In realtime they need to sift
through the data, understand it and act upon it. Method
one assumes unlimited computing resource and
unlimited processing time. For example, generating the
scoreboards requires examining Gigabytes of data. The
ability of the players to analyze the data is necessarily
constrained by the cognitive limits of human memory,
attention focus, multi-tasking under workload, and
pattern/schema matching ability[and other limits???...].
So, in terms of information content Blue's SA is
necessarily a subset of the information content of Blue
perspective. Blue's SA is not a strict set, since the
players may misinterpret the information within the
Blue's perspective. By comparing the Blue's SA against
the ground truth we are able to determine how
effectively the sensor data is being used.

Use of Control Group in Assessing Sensor Effectiveness

Method three, Blue's SA versus provides a potentially a
fairer way to judge sensor effectiveness. Here we
propose a Blue Cell control group, which with the
exception of not using the new sensor technologies, are
the same as the Blue players. The Control group still
receives all the data from traditional observers and
sensors, and it still must perform the operational tasks
of the Blue players. This measurement helps to quantify
the advantages offered by the new sensor technologies,
and if the advantage is offset by the extra cognitive
load imposed upon the players.

Use of cognitive methods to increase accuracy of SA
measurement

Objective Measures

In general, it is much more desirable to obtain objective
measures but because of the difficulty in doing so
researchers investigating situation awareness tend to
rely on subjective measures. Our goal is to develop
quantitative measurements of situation awareness for
the various levels in our domain. Objective means that
may be used for this purpose can be direct experimental
techniques, such as probes, and verbal protocols (cite).

Currently, JSAF records player’s situation awareness
by having them annotate “Situation Awareness
Objects” (SAOs) on the computer screen during the
exercise. SAOs are pointers that indicate the presence
and direction of movement of the opposing force.
When the exercise is complete, overall SA is evaluated
by comparing the total SAOs recorded against the
opposing forces activities. As it stands now, the
process is manual and subjective, which leaves room
for improvement.

Use of Cognitive Science and SA

Applying what we know about the limitations and
biases of cognition can help us increase the validity of
our measurements of sensor effectiveness. The analysis
is beyond the scope of this paper.

The JSAF exercise has some similarities to some of the
cognitive experimental paradigms so we may be able to
borrow. We will show how they are similar.

Three Pronged Approach

98

An experimental approach adapted from research
methods in narrative comprehension is the three-
pronged approach. The first prong in this approach
corresponds to a set of theoretical predictions. The
second prong corresponds to the use of verbal
protocols/ and or subjective measures. The third prong
corresponds to the collection of online behavioral
measures. The purpose of the two types of data will be
to provide converging evidence for the theoretical
predictions of the first prong, somewhat of a different
use than in narrative comprehension.

This approach may be used to study situation
awareness errors by formulating a set of hypothetical
predictions based on intuition or experience about
individual and group situation awareness. Subjective
evaluation or measurement based on verbal protocols or
interviews that are given after the exercise can include:
(a) an effectiveness form, (b) individual or collective
group discussion or “hot wash”, and (c) a third party
observer. Objective measurements include the
introduction of experimental probes into the exercise, at
the group level situation awareness error is the number
of situation awareness objects placed by each
individual puckers compared between each SA object
place and actual Red Force, at the collective/group
level situation awareness error is meeting mission
objective (normalize to a certain percentage for each
player).

Situation Models in Narrative Comprehension

One potential framework that may prove fruitful to
look at in researching situation awareness in JSAF
comes from research in situation models in cognitive
psychology. By comparing how situations are defined
within the two paradigms, we can identify general
commonalities and differences that may increase our
understanding of situation awareness in JSAF.
In cognitive psychology, a narrative comprehension
paradigm has been used to study situation models. This
typically consists of reading narratives on a sentence-
by-sentence basis and answering experimental probe
questions. Readers have no background knowledge of
what the story is about until they start reading. As they
read, the information they encounter can shift along a
number of situation defining dimensions. Research
using reading time measures has identified 5
dimensions to which readers are sensitive. These are
entity, space, time, goal, and causality. In other words,
readers construct a situation model that is updated to
correspond to changes in the text’s situation. Finally,
once the story has ended, readers have encoded a
“global static summary” of the story, which
corresponds to the completed situation model.

Read Comprehension JSAF Simulation
Read the story

- No apriori
knowledge of
entities

- Time can be told
out of order

- No spatial
knowledge

- Unknown goals
- Causality is

“fixed”

Initially Starts the Vignette
Some background:

- apriori menu of
entities

- no time shift
expected

- spatial boundary
- 2 sets of goals
- causality is

dynamic

Information acquired
throughout the reading
process can cause shift
along the five dimensions:

- entity
- space
- time
- goals
- causality

Information acquisition = the
game/experiment:

- no time shift
- sensors provide

space and entity
shift

- inferential provide
goals and
causality shift

Completion State
Global static summary

- character
summary

- plots
- space and time

summary

End of Vignette
Global static summary

- effectiveness of
mission

- goals evaluated
- effectiveness of

sensors
Table 2: Comparison between reading

comprehension narrative and JSAF simulation
along the five cognitive processes dimensions

Although quite different experimentally, the JSAF
paradigm can be compared to the narrative
comprehension paradigm. Reading is naturally a more
passive activity than game playing. Players are
provided with a vignette so there is some background
knowledge. The knowledge includes information about
the situation dimensions, such as an apriori menu of
entities and spatial boundaries and geographical
constraints. As the game progresses, situation
information comes from various sources: entity and
spatial information comes from the sensors, whereas
goal and causal information is inferred the movements
of the entities. Note that the game continues
uninterrupted so there is no time shift. When the game
is over, the result is a global static summary, analysis of
the end result of the game in which the effectiveness of
the strategy, the goals of the mission, and the
effectiveness of the information provided by the
sensors are evaluated. The challenge is to objectively
measure situation awareness, probes, and causality
shifts.

CONCLUSIONS AND FUTURE WORK

99

In this paper, we laid the foundation for integrating
mental models with physical models in the context of
the JSAF experiment. Of specific interest is player’s
situation awareness. An alternative taxonomy of
situation awareness is proposed that positions JSAF in
the proper domain of situation awareness. It is argues
that cognitive methods play an important role in the
measurement of situation awareness and the
development of quantitative models in JSAF.

Our future work will focus on developing a prescriptive
and descriptive model of situation awareness within the
synthetic battlefield arena and incorporating
quantitative and qualitative measures into our JSAF
experiments. We will use the results to validate sensor
technology, and with this commanding officers can
train their players and develop doctrine for various
engagement tactics.

ACKNOWLEDGEMENTS

This material is based on research sponsored by the Air
Force Research Laboratory under agreement number
F30602-02-C-0213. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes, notwithstanding any copyright
notation thereon.
.

REFERENCES

Pew, Richard W. and Anne S. Mavor (1997) (ed).

Representing Human Behavior in Military
Simulations. Washington D.C.: National
Academy Press.

Endsley, Mica R. and Daniel J. Garland (2000) (ed).

Situation Awareness Analysis and
Measurement. Mahwah, N.J.: Lawrence
Erlbaum Associates, Publishers.

Gentner, Dedre and Ablert K. Stevens (1983) (ed).

Mental Models. Hillsdale, N.J.: Lawrence
Erlbaum Associates, Publishers.

Matheus, Christopher J., Mieczyslaw M . Kokar, and

Kenneth Baclawski (2003). A Core Ontology
for Situation Awareness. In Proceedings of
Sith International Conference on Information
Fussion. Cairns, Australia, pp 545-552.

Graebner, Robert, Gregory Rafuse, Robert P. Miller,

and Ke-Thia Yao (2003. The Road to
Successful Joint Experimentation Starts at the
Data Collection Trail. Proceedings of the

Interservice/Industry Training, Simulation and
Education Conference, Orlanda, FL.

Williams, Richard and John J. Tran (2003). Supporting

Distributed Simulation on Scalable Parallel
Processor Systems. . Proceedings of the
Interservice/Industry Training, Simulation and
Education Conference, Orlanda, FL.

McCarley, Jason S., Christopher D. Wickens, and

William J. Horrey (2002). A computational
model of attention/situation awareness.
Proceedings of the 46th Annual meeting of the
human factors and ergonomics Society. Santa
Monica, CA.

100

	AFRL-IF-RS-TR-2006-119a.pdf
	Appendix B-I.pdf
	Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao
	ABSTRACT
	ABOUT THE AUTHORS
	Robert Miller is a Senior Software Engineer with Alion Science and Technology. He brings over 11 years of experience to the current effort of designing, coding, and testing software for the Future After Action Review System. He holds a Bachelors Degree in Engineering from The Cooper Union School of Engineering and a Masters Degree in Computer Science from the City University of New York.

	Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao
	BACKGROUND
	Providing Immersive Synthetic Environments

	Analysis vs. Discovery
	THE PROCESS
	1. What question(s) does the experiment address?
	-What hypothesis is being explored?
	-Steps include “drilling down” or decomposing the question into sub-elements.
	-Sub-elements are further decomposed into metrics that will support the answer in a manner favorable to quantification.
	-This process begins a spiral crosswalk between the data analyst and the data collection developer to ensure what is being asked for is provided.
	Format
	Timing
	New/Innovative Approaches to Data Collection
	FAARS Toolkit Composition
	Data Relationships
	Understanding hlaResults Collected Data
	Lessons Learned: Evolving Methods and Tools
	Processing Collected Data
	Post-Event Data Processing

	A Near-Real-Time Tool: Sensor/Target Scoreboard

	Harnessing SPP for Logging and Analysis
	Logging and analysis desired properties
	Partitioning the data
	Implementation
	CONCLUSIONS
	ACKNOWLEDGEMENTS

	23-Helf_Wag-03.pdf
	ABSTRACT
	ABOUT THE AUTHORS
	THE DCEE
	SCALABILITY
	SCALABLE PARALLEL PROCESSORS
	INTEREST MANAGEMENT
	MULTICASTING
	RTI-S
	COMMUNICATIONS ARCHITECTURE
	ROUTER DESIGN
	TOPOLOGY
	INTEREST MANAGEMENT IMPROVEMENTS
	PROTOTYPE EVENTS
	FUTURE REQUIREMENTS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

	24-Lucas_Davis-03.pdf
	ABSTRACT
	ABOUT THE AUTHORS
	Introduction and Background
	JSAF
	Plan View display from a SAF
	3D Rendered display from a SAF
	Tree Routers
	Tree Router Architecture

	Mesh Routers
	Plotting router network I/O as a function of time

	Initiation Issues and the “SimPrep Tool”
	Stage

	Applications
	Abstraction stage
	Implementation stage
	Execution stage
	Analysis stage
	Table 1

	Accomplishments and Future Directions
	Acknowledgements
	References

	25-Wlms_Tran-03.pdf
	ABSTRACT
	ABOUT THE AUTHORS
	
	INTRODUCTION
	The SPP Federation
	ACKNOWLEDGEMENTS
	REFERENCES

	26-Davis_Baer_Gott-04.pdf
	ABSTRACT
	ABOUT THE AUTHORS
	
	BACKGROUND AND INTRODUCTION
	The Need to Improve Simulations
	Limitations Imposed on Modeling and Simulation by Current Computing Paradigms
	Limitations Imposed by Traditional Data Analysis
	Future Needs of Analysts

	HIGH PERFORMANCE COMPUTING
	Linux Clusters: The Beowulf Concept
	Grid Computing
	Parallel Data Handling

	ADVANCED DATA ANALYSIS
	Advances in Database Technology
	Data Mining
	Evolutionary Computing
	Genetic Algorithms
	Monte Carlo Analyses

	IMPLEMENTATION EXAMPLES
	Ongoing Work

	TECHNOLOGY IMPACT
	A Development Path: Successful Rapid Prototyping

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

	27-Gott_BBrrt-04.pdf
	Acknowledgements

	28-Grabner_Yao-04.pdf
	Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao
	ABSTRACT
	ABOUT THE AUTHORS
	Robert Miller is a Senior Software Engineer with Alion Science and Technology. He brings over 11 years of experience to the current effort of designing, coding, and testing software for the Future After Action Review System. He holds a Bachelors Degree in Engineering from The Cooper Union School of Engineering and a Masters Degree in Computer Science from the City University of New York.

	Robert J. Graebener, Gregory Rafuse, Robert Miller & Ke-Thia Yao
	PRELUDE
	ACKNOWLEDGEMENTS

	29-Tran_Cur_Yao-04.pdf
	ABSTRACT
	ABOUT THE AUTHORS
	INTRODUCTION
	Motivation
	BACKGROUND
	Taxonomy of situation awareness
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

